Dependence of the First Frequency of Natural Vibrations of a Beam Truss with a Triangular Latice on the Number of Panels

Main Article Content

Abstract

An algorithm is given for deriving the analytical dependence of the smallest natural frequency of oscillations of a plane statically determinate regular truss on the number of panels. The Dunkerley method and its simplified version were used. It is shown that the simplified version gives not only a simpler, but also a more accurate formula. It is assumed that the mass of the truss is concentrated in its nodes, and the number of degrees of freedom of the structure coincides with the number of nodes. For analytical transformations and solving recurrent equations, the Maple computer mathematics system was used. The truss stiffness is calculated using the Maxwell–Mohr formula.

Article Details

References

Ignatyev A.V., Ignatyev V.A. On the Efficiency of the Finite Element Method in the Form of the Classical Mixed Method // Procedia Engineering. 2016. V. 150. P. 1760–1765. https://doi.org/10.1016/J.PROENG.2016.07.167
2. Коваленко Г.В., Макеев В.Б., Дементьева В.В. Исследование частот собственных колебаний ферм на основе метода конечных элементов (МКЭ) // Молодая мысль: Наука, технологии, инновации. 2015. С. 44–48.
3. Цуканова Е.С. Расчет вынужденных колебаний стержневых систем методом конечных элементов с применением динамического конечного элемента // Транспортное машиностроение. 2015. № 2 (46). С. 93.
4. Kirsanov M.N. Formulas for the fundamental frequency of natural oscillations of a planar regular truss // Строительная механика инженерных конструкций и сооружений. 2023. Т. 19. № 6. С. 551–559. https://doi.org/10.22363/1815-5235-2023-19-6-551-559
5. Kirsanov M. Formula for natural frequency oscillation truss with an arbitrary number of panels // Construction of Unique Buildings and Structures. 2023. V. 109 Article 10918. https://doi.org/10.4123/CUBS.109.18
6. Hutchinson R.G., Fleck N.A. Microarchitectured cellular solids – The hunt for statically determinate periodic trusses // ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 2005. V. 85, No. 9. P. 607–617. https://doi.org/10.1002/zamm.200410208.
7. Hutchinson R.G., Fleck N.A. The structural performance of the periodic truss // Journal of the Mechanics and Physics of Solids. 2006. V. 54, No. 4. P. 756–782. https://doi.org/10.1016/j.jmps.2005.10.008.
8. Комерзан Е.В., Маслов А.Н. Аналитическая оценка основной частоты собственных колебаний регулярной фермы // Строительная механика и конструкции. 2023. №2 (37). С. 17–26. https://doi.org/10.36622/VSTU.2023.37.2.002
9. Щиголь Е.Д. Формула для нижней оценки собственных колебаний плоской регулярной балочной фермы с прямолинейным верхним поясом // Строительная механика и конструкции. 2023. №2 (37). С. 46–53. https://doi.org/10.36622/VSTU.2023.37.2.005
10. Комерзан Е.В., Маслов А.Н. Оценка основной частоты колебаний Г-образной пространственной фермы // Строительная механика и конструкции. 2023. №2 (37). С. 35–45. https://doi.org/10.36622/VSTU.2023.37.2.004
11. Kirsanov M. Simplified Dunkerley method for estimating the first oscillation frequency of a regular truss // Construction of Unique Buildings and Structures. 2023. V. 108, Article 10801. https://doi.org/10.4123/CUBS.108.1