Neural Network for Generating Images Based on Song Lyrics using OpenAI and CLIP Models

Main Article Content

Abstract

The effectiveness of the ImageNet diffusion model and CLIP models for image generation based on textual descriptions was investigated. Two experiments were conducted using various textual inputs and different parameters to determine the optimal settings for generating images from text descriptions. The results showed that while ImageNet performed well in generating images, CLIP demonstrated better alignment between textual prompts and relevant images. The obtained results highlight the high potential of combining these mentioned models for creating high-quality and contextually relevant images based on textual descriptions.

Article Details

References

1. Elasri M., Elharrouss O., Al-Maadeed S., Tairi H. Image Generation: A Review // Neural Processing Letters. 2022. Vol. 54. No. 5. P. 4609–4646.
2. Zhang H., Song H., Li S., Zhou M., Song D. A survey of controllable text generation using transformer-based pre-trained language models // arXiv preprint arXiv:2201.05337. 2022
3. Основы генеративно-состязательных сетей. URL: https://habr.com/ru/articles/726254/
4. Brown T., Mann B., Ryder N., Subbiah M., Kaplan J. D., Dhariwal P., Dhariwal P., Neelakantan A., Shyam P., Sastry G., Askell. A, Agarwal S., Herbert-Voss A., Krueger G., Henighan T., Child R., Ramesh A., Ziegler D.M., Wu J., Winter C., Hesse C., Chen M., Sigler E., Litwin M., Gray S., Chess B., Clark J., Berner C., McCandlish S., Radford A., Sutskever I., Amodei D. Language models are few-shot learners // Advances in neural information processing systems. 2020. Vol. 33. P. 1877–1901.
5. DALL⋅E 2. URL:https://openai.com/product/dall-e-2.
6. How AI is Transforming Text-to-Image Generation. URL: https://nesesho.com/index.php/2023/04/12/how-ai-is-transforming-text-to- image-generation/
7. OpenAI⋅GitHub. URL: https://github.com/openai.
8. Gulrajani I., Ahmed F., Arjovsky M., Dumoulin V., Courville A.C. Improved training of wasserstein GANs // Advances in neural information processing systems. 2017. Vol. 30. P. 5767–5777.
9. Indolia S., Goswami A.K., Mishra S.P., Asopa P. Conceptual understanding of convolutional neural network-a deep learning approach // Procedia computer science. 2018. Vol. 132. P. 679–688.
10. Laudani A., Lozito G.M., Fulginei F.R., Salvini A. On training efficiency and computational costs of a feed forward neural network: a review // Computational intelligence and neuroscience. 2015. P. 83–83.
11. CLIP. URL: https://github.com/openai/CLIP.
12. Dhariwal P., Nichol A. Diffusion models beat gans on image synthesis // Advances in Neural Information Processing Systems. 2021. Vol. 34. P. 8780–8794.
13. Kim G., Kwon T., Ye J.C. Diffusionclip: Text-guided diffusion models for robust image manipulation // In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022. P. 2426–2435.


Most read articles by the same author(s)