Electronic Database on Experimental Bond Dissociation Energies of Organic Compounds

Main Article Content

Vladimir Evgen’evicn Tumanov
Andrey Ivanovich Prokhorov

Abstract

The presented web database on experimental homolytic bond dissociation energies in organic compounds is intended for use by a wide range of theoreticians and practitioners in free access. The paper provides a brief overview of the sources of the dissociation energies of bonds of organic molecules, which are calculated theoretically, measured experimentally and estimated from kinetic and thermochemical experimental data, their presentation in the Internet database. A web database on homolytic bond dissociation energies of organic compounds is presented. The reported bond dissociation energies are calculated from experimental kinetic and thermochemical data. Descriptions of experimental data sources, classes of organic compounds and calculation methods are given. The logical structure of the database and the description of the main fields of its tables are given. The main search form of the database interface is presented and an example of a search result for a specific organic compound is given. Bond dissociation energies are calculated at a temperature of 298.15 K, which is usually absent in most sources. The analogs of the present base are inferior to the latter in taking into account temperature correlations. Currently, work is underway to analyze and analyze the published data taking into account the entropy effects.

Article Details

References

1. Luo Yu-Ran. Comprehensive Handbook of Chemical Bond Energies. Boca Raton: CRC Press, 2007. 1655 p. https://doi.org/10.1201/9781420007282
2. Гурвич Л.В., Караченцев Г.В., Кондратьев В.Н., Лебедев Ю.А., Медведев В.А., Потапов В.К., Ходеев Ю.С. Энергии разрыва химических связей. Потенциалы ионизации и сродство к электрону. М.: Наука, 1974. 351 с.
3. Денисов Е.Т., Туманов В.Е. Оценка энергий диссоциации связей по кинетическим характеристикам радикальных жидкофазных реакций // Успехи химии. 2005. Т. 74. № 9. С. 905–938. http://dx.doi.org/10.1070/RC2005v074n09ABEH001177
4. McMillen J.F., Golden D.M. Hydrocarbon Bond Dissociation Energies // Ann. Rev. Chem. 1982. V. 33. P. 493–532. https://doi.org/10.1146/annurev.pc.33.100182.002425
5. Blanksby S., Ellison G. Bond dissociation energies of organic molecules // Accounts of chemical research. 2003. V. 36. No. 4. P. 255–263. https://doi.org/10.1021/ar020230d
6. Туманов В.Е., Денисов Е.Т. База данных по энергиям диссоциации связей углеводородов и их производных // Нефтехимия. 2003. Т. 43. № 1. С. 65–67.
7. Thermochemical databases for pure substances and solutions
including alloys, oxides, sulfides, ceramics, aqueous, nuclear and inorganic systems. URL: https://www.crct.polymtl.ca/thermo_databases.html other
8. John P.S., Guan Y., Kim Y., Kim S., Paton R.S. BDE-db: A collection of 290,664 Homolytic Bond Dissociation Enthalpies for Small Organic Molecules. figshare. 2019. Dataset. https://doi.org/10.6084/m9.figshare.10248932.v1
9. iBonD 2.0. URL: http://ibond.nankai.edu.cn/
10. Иориш В.С., Юнгман В.С. База данных «Термические константы веществ» [Электронный ресурс]. URL: http://www.chem.msu.ru/cgi-bin/tkv.pl?show=welcome.html/welcome.html
11. John P.C., Guan Y., Kim Y., Kim S., Paton R.S. Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost // Nat. Commun. 2020. V. 11. P. 2328. https://doi.org/10.1038/s41467-020-16201-z
12. John P.C., Guan Y., Kim Y., Etz B.D., Kim S., Paton R.S. Quantum chemical calculations for over 200,000 organic radical species and 40,000 associated closed-shell molecules // Sci 2020. Data 7, 244. https://doi.org/10.1038/s41597-020-00588-x
13. Tsang W. Heats of Formation of Organic Free Radicals by Kinetic Methods. // In: Martinho Simões J.A., Greenberg A., Liebman J.F. (eds) Energetics of Organic Free Radicals. Structure Energetics and Reactivity in Chemistry Series (SEARCH series). 1996. V. 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0099-8_2
14. Денисов Е.Т. Оценка энергии диссоциации OH-связи фенолов на основании кинетических измерений // Журнал физической химии. 1995. Т. 69. № 4. С. 623–631.
15. Денисов Е.Т., Денисова Т.Г. Кинетические параметры реакций RO2• + RH в рамках параболической модели переходного состояния // Кинетика и катализ. 1993. Т. 34. № 2. С. 199–206.
16. Денисов Е.Т. Новые эмпирические модели реакций радикального отрыва // Успехи химии. 1997. Т. 66. № 10. С. 953–971. http://dx.doi.org/10.1070/RC1997v066n10ABEH000364
17. Benson S.W. Thermochemical Kinetics, 2nd ed.; Wiley-Interscience: New York, 1976.
18. Денисов Е.Т., Денисова Т.Г. Энергии диссоциации N–H-связей в ароматических аминах (обзор) // Нефтехимия. 2015. Т. 22. № 2. С. 91–109. https://doi.org/10.7868/S0028242115020070
19. Domalski E.S., Hearing E.D. Estimation of Thermodynamic Properties of Organic Compounds in the Gas, Liquid, and Solid Phases at 298.15 K // In: Jochum C., Hicks M.G., Sunkel J. (eds) Physical Property Prediction in Organic Chemistry. Springer, Berlin, Heidelberg. 1988. https://doi.org/10.1007/978-3-642-74140-1_10