Situational Modeling Technology in Virtual Environment Systems
Main Article Content
Abstract
The technology of modelling various situations in virtual environment systems, which are computer three-dimensional models of a real or artificial environment, is discussed. The user can view these scenes directly on the computer screen, wall screen, in a stereo glasses, virtual reality glasses, etc. He can also move inside a virtual scene and interact with its objects. In turn, the environment can also change. This allows modelling of various situations (situation modelling) in the virtual environment system. With such modelling, some static or dynamic situation is set in the virtual environment system in which the operator must perform the tasks assigned to him.
A mechanism for setting situations by changing a virtual three-dimensional scene using configuration files and virtual control panels is proposed. A special language has been developed for writing configuration files, and a special editor has been developed for creating virtual control panels. The approbation of the proposed methods is presented on the examples of two virtual scenes: a training ground for mobile robots and a jet backpack for the rescue of an astronaut in outer space.
Article Details
References
2. Jeong-Nam Kim, James E. Grunig. Problem Solving and Communicative Action: A Situational Theory of Problem Solving // Journal of Communication. 2011. V. 61. P. 120–149.
3. Andoga R., Főző L., Madarász L. Digital Electronic Control of a Small Turbojet Engine MPM 20 // Acta Polytechnica Hungarica. 2007. V. 4. No. 4. P. 83–95.
4. Maltsev A.V., Mikhaylyuk M.V. Virtual Environment System for Pirs Space Module Interior // CEUR Workshop Proceedings: Proc. of the 29th International Conference on Computer Graphics and Vision. 2019. V. 2485. URL: http://ceur-ws.org/Vol-2485/paper1.pdf
5. Алтунин А.А., Долгов П.П., Жамалетдинов Н.Р., Иродов Е.Ю., Коренной В.С. Направления применения технологий виртуальной реальности при подготовке космонавтов к внекорабельной деятельности // Пилотируемые полеты в космос. 2021. № 1 (38). С. 72–88.
6. Maltsev A.V., Mikhaylyuk M.V. Visualization and virtual environment technologies in the tasks of cosmonaut training // Scientific Visualization. 2020. V. 12, No. 3. P. 16–25.
7. Михайлюк М.В., Мальцев А.В., Тимохин П.Ю., Страшнов Е.В., Крючков Б.И., Усов В.М. Системы виртуального окружения для прототипирования на моделирующих стендах использования космических роботов в пилотируемых полетах // Пилотируемые полеты в космос. 2020. № 2 (35). С. 61–75.
8. Tomchinskaya T., Shaposhnikova M., Dudakov N. Training Beginners and Experienced Drivers using mobile-based Virtual and Augmented Reality // CEUR Workshop Proceedings: Proc. of the 30th International Conference on Computer Graphics and Vision. 2020. V. 2744. URL: http://ceur-ws.org/Vol-2744/paper69.pdf
This work is licensed under a Creative Commons Attribution 4.0 International License.
Presenting an article for publication in the Russian Digital Libraries Journal (RDLJ), the authors automatically give consent to grant a limited license to use the materials of the Kazan (Volga) Federal University (KFU) (of course, only if the article is accepted for publication). This means that KFU has the right to publish an article in the next issue of the journal (on the website or in printed form), as well as to reprint this article in the archives of RDLJ CDs or to include in a particular information system or database, produced by KFU.
All copyrighted materials are placed in RDLJ with the consent of the authors. In the event that any of the authors have objected to its publication of materials on this site, the material can be removed, subject to notification to the Editor in writing.
Documents published in RDLJ are protected by copyright and all rights are reserved by the authors. Authors independently monitor compliance with their rights to reproduce or translate their papers published in the journal. If the material is published in RDLJ, reprinted with permission by another publisher or translated into another language, a reference to the original publication.
By submitting an article for publication in RDLJ, authors should take into account that the publication on the Internet, on the one hand, provide unique opportunities for access to their content, but on the other hand, are a new form of information exchange in the global information society where authors and publishers is not always provided with protection against unauthorized copying or other use of materials protected by copyright.
RDLJ is copyrighted. When using materials from the log must indicate the URL: index.phtml page = elbib / rus / journal?. Any change, addition or editing of the author's text are not allowed. Copying individual fragments of articles from the journal is allowed for distribute, remix, adapt, and build upon article, even commercially, as long as they credit that article for the original creation.
Request for the right to reproduce or use any of the materials published in RDLJ should be addressed to the Editor-in-Chief A.M. Elizarov at the following address: amelizarov@gmail.com.
The publishers of RDLJ is not responsible for the view, set out in the published opinion articles.
We suggest the authors of articles downloaded from this page, sign it and send it to the journal publisher's address by e-mail scan copyright agreements on the transfer of non-exclusive rights to use the work.