Refutation of a Rumor by the Mass Media: Mathematical Model and Numerical Experiments

Main Article Content

Abstract

The process is considered, in which an unreliable rumor spreads in society, which is opposed by the broadcasting of the mass media. In this case, the unreliability of hearing is understood so that the information of the media contains a refutation and thereby inoculates individuals, that is, makes them immune to hearing. At the same time, individuals who have managed to accept the rumor cease to trust the media and thereby become unavailable for persuasion. For this process, a mathematical model is proposed in two versions. The variant with continuous time reveals some of the mathematical properties of the model. The discrete time option is more convenient for analyzing real processes since it allows one to estimate the parameters of the model. To assess these parameters, data on the ratings of the main socio-political programs of Russian TV channels were used. Several scenario calculations of the model with these parameters are presented. The main conclusion is that if the information disseminated by the media is not viral, that is, it is not retold by viewers to their neighbors in society, then the media are unable to resist rumors.

Article Details

References

1. Daley D.J., Kendall D.G. Stochastic rumors // Journal of the Institute of Mathematics and its Applications. 1964. Vol. 1. P. 42–55.
2. Maki D.P., Thompson M. Mathematical Models and Applications. Prentice-Hall, Englewood Cliffs, NJ, USA, 1973.
3. Chen Guanghua, Shen H., Ye T., Chen G., Kerr N. A kinetic model for the spread of rumor in emergencies // Discrete dynamics in nature and society. 2013. Vol. 2013. Article ID 605854. 8 p.
4. Isea R., Mayo-García R. Mathematical analysis of the spreading of a rumor among different subgroups of spreaders // Pure and Applied Mathematics Letters. 2015. Vol. 2015. P. 50–54.
5. Mikhailov A.P., Pronchev G.B., Proncheva O.G. Mathematical Modeling of Information Warfare in Techno-Social Environments // Techno-Social Systems for Modern Economical and Governmental Infrastructures. IGI Global. 2019. P. 174–210.
6. Самарский А.А., Михайлов А.П. Математическое моделирование (Идеи, Методы, Примеры), 1997.
7. Михайлов А.П., Петров А.П., Прончева О.Г. Модель информационного противоборства в социуме с кусочно-постоянной функцией дестабилизирующего воздействия // Математическое моделирование. 2018. Т. 30, № 7. С. 47–60.
8. Petrov A.P., Lebedev S.A. Online Political Flashmob: The Case of 632305222316434 // Computational mathematics and information technologies. 2019. No. 1. P. 17–28. doi: 10.23947/2587-8999-2019-1-1-17-28
9. Chartishvili A.G., Kozitsin I.V., Goiko V. L., Saifulin E.R. On an Approach to Measure the Level of Polarization of Individuals’ Opinions // 2019 Twelfth International Conference "Management of large-scale system development" (MLSD), Moscow, Russia, 2019. P. 1–5. doi: 10.1109/MLSD.2019.8911015.
10. Kozitsin I.V., Marchenko A.M., Goiko V.L., Palkin R.V. Symmetric Convex Mechanism of Opinion Formation Predicts Directions of Users’ Opinions Trajectories // 2019 Twelfth International Conference "Management of large-scale system development" (MLSD), Moscow, Russia, 2019. P. 1–5. doi: 10.1109/MLSD.2019.8911064.
11. Kozitsin I.V., Chkhartishvili A.G., Marchenko A.M., Norkin D.O., Osipov S.D., Uteshev I.A., Goiko V.L., Palkin R.V., Myagkov M.G. Modeling Political Preferences of Russian Users Exemplified by the Social Network Vkontakte // Mathematical Models and Computer Simulations. 2020. Vol. 12. P. 185–194.
https://doi.org/10.1134/S2070048220020088.
12. Chkhartishvili A.G., Gubanov D.A., Novikov D.A. Social Networks: Models of information influence, control and confrontation. Cham, Switzerland: Springer International Publishing, 2019. 158 p. doi: 10.1007/978-3-030-05429-8.
13. Губанов Д.А., Чхартишвили А.Г. Влиятельность пользователей и метапользователей социальной сети // Проблемы управления. 2016. № 6. С. 12–17.
14. Chkhartishvili A.G, Gubanov D.A. On Approaches to Identifying Information Spread Channels in Online Social Networks // 2019 Twelfth International Conference "Management of large-scale system development" (MLSD), Moscow, Russia, 2019. P. 1–5. doi: 10.1109/MLSD.2019.8911065
15. Akhtyamova L., Alexandrov M., Cardiff J., Koshulko O. Opinion Mining on Small and Noisy Samples of Health-related Texts // Advances in Intelligent Systems and Computing III (Proc. of CSIT-2018), Springer, AISC. 2019. Vol. 871. P. 1–12.
16. Akhtyamova L., Cardiff J. LM-Based Word Embeddings Improve Biomedical Named Entity Recognition: A Detailed Analysis // Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science. Springer, Cham, 2020. Vol. 12108. doi: 10.1007/978-3-030-45385-5_56
17. Boldyreva A., Sobolevskiy O., Alexandrov M., Danilova V. Creating collections of descriptors of events and processes based on Internet queries // Proc. of 14-th Mexican Intern. Conf. on Artif. Intell. (MICAI-2016), Springer Cham, LNAI, 2016. Vol. 10061 (chapter 26). P. 303–314.
18. Boldyreva A., Alexandrov M., Koshulko O., Sobolevskiy O. Queries to Internet as a tool for analysis of the regional police work and forecast of the crimes in regions // Proc. of 14-th Mexican Intern. Conf. on Artif. Intell. (MICAI-2016), Springer Cham, LNAI, 2016. Vol. 10061 (chapter 25). P. 290–302.
19. Mediascope. URL: https://mediascope.net/data/#popup_definition_tv