Distributed Training of ML Model on Mobile Devices
Main Article Content
Abstract
Article Details
References
Brendan McMahan and Daniel Ramage. Federated Learning: Collaborative Machine Learning without Centralized Training Data. 2017. URL: https://ai.googleblog.com/2017/04/federated-learning-collaborative.html (дата обращения: 03.03.2020)
Krishna Pillutla at all. Robust Aggregation for Federated Learning. 2019. arXiv:1912.13445 [stat.ML]
What’s New in the iOS SDK // Apple. 2019. URL: https://developer.apple.com/ios/whats-new/ (дата обращения: 03.03.2020)
Apple. What’s New in Core ML 3. 2019. URL: https://developer.apple.com/ machine-learning/core-ml/ (дата обращения: 03.03.2020)
MIT Technology Review. From cloud to the edge: On-device artificial intelligence boosts performance. 2019. URL: https://www.technologyreview.com/s/ 613527/from-cloud-to-the-edge-on-device-artificial-intelligence-boosts-performance/ (дата обращения: 03.03.2020)
B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-Efficient Learning of Deep Networks from Decentralized Data. In Artificial Intelligence and Statistics, 2017. P. 1273–1282.
K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth. Practical Secure Aggregation for Privacy-Preserving Machine Learning. In ACM SIGSAC Conference on Computer and Communications Security, стр. 1175–1191, 2017.
Get Started with Federated Learning for Data privacy // Leapfrog. 2019. URL: https://www.lftechnology.com/blog/ai/federated-learning-data-privacy/ (дата обращения: 03.03.2020)
Theo Ryffel at all. A generic framework for privacy preserving deep learning. 2018. arXiv:1811.04017 [cs.LG]
Personalizing a Model with On-Device Updates // Apple. 2019. URL: https://developer.apple.com/documentation/coreml/core_ml_api/personalizing_a_model_with_on-device_updates (дата обращения: 03.03.2020)
Matthijs Hollemans. On-device training with Core ML – part 1. 2019. URL: https://machinethink.net/blog/coreml-training-part1/ (дата обращения: 03.03.2020)
Jason Brownlee. A Gentle Introduction to Transfer Learning for Deep Learning. 2017. URL: https://machinelearningmastery.com/transfer-learning- for-deep-learning/ (дата обращения: 03.03.2020)
Alexander Rakhlin. Online Methods in Machine Learning. 2016. URL: http://www.mit.edu/~rakhlin/6.883/
Martijn Willemsen. Anonymizing Unstructured Data to Prevent Privacy Leaks during Data Mining. 2016. URL: https://www.semanticscholar.org/paper/ Anonymizing-Unstructured-Data-to-Prevent-Privacy-Willemsen/40781ab4856f3d50af8ecda8f9aa1851c2e027eb (дата обращения: 03.03.2020)
Adam Drake. Scalable Machine Learning with Fully Anonymized Data. 2018. URL: https://adamdrake.com/scalable-machine-learning-with-fully- anonymized-data.html (дата обращения: 03.03.2020)
Analytics Vidhya. Introduction to Apple’s Core ML 3 – Build Deep Learning Models for the iPhone. 2019. URL: https://www.analyticsvidhya.com/blog/2019/11/ introduction-apple-core-ml-3-deep-learning-models-iphone/ (дата обращения: 03.03.2020)
Presenting an article for publication in the Russian Digital Libraries Journal (RDLJ), the authors automatically give consent to grant a limited license to use the materials of the Kazan (Volga) Federal University (KFU) (of course, only if the article is accepted for publication). This means that KFU has the right to publish an article in the next issue of the journal (on the website or in printed form), as well as to reprint this article in the archives of RDLJ CDs or to include in a particular information system or database, produced by KFU.
All copyrighted materials are placed in RDLJ with the consent of the authors. In the event that any of the authors have objected to its publication of materials on this site, the material can be removed, subject to notification to the Editor in writing.
Documents published in RDLJ are protected by copyright and all rights are reserved by the authors. Authors independently monitor compliance with their rights to reproduce or translate their papers published in the journal. If the material is published in RDLJ, reprinted with permission by another publisher or translated into another language, a reference to the original publication.
By submitting an article for publication in RDLJ, authors should take into account that the publication on the Internet, on the one hand, provide unique opportunities for access to their content, but on the other hand, are a new form of information exchange in the global information society where authors and publishers is not always provided with protection against unauthorized copying or other use of materials protected by copyright.
RDLJ is copyrighted. When using materials from the log must indicate the URL: index.phtml page = elbib / rus / journal?. Any change, addition or editing of the author's text are not allowed. Copying individual fragments of articles from the journal is allowed for distribute, remix, adapt, and build upon article, even commercially, as long as they credit that article for the original creation.
Request for the right to reproduce or use any of the materials published in RDLJ should be addressed to the Editor-in-Chief A.M. Elizarov at the following address: amelizarov@gmail.com.
The publishers of RDLJ is not responsible for the view, set out in the published opinion articles.
We suggest the authors of articles downloaded from this page, sign it and send it to the journal publisher's address by e-mail scan copyright agreements on the transfer of non-exclusive rights to use the work.