Application of Supercomputer Technologies for Long-Term Modeling of Permafrost Boundaries in the Oil and Gas Fields of the Arctic

Main Article Content

Mikhail Yurievich Filimonov
Nataliia Anatolyevna Vaganova
Elena Nikolaevna Akimova
Vladimir Evgenevich Misilov

Abstract

A model of propagation of thermal fields in permafrost from various engineering objects operating in Arctic regions is considered. The proposed model includes the most significant technical and climatic parameters affecting the formation of thermal fields in the surface layer of the soil. The main objective of the study is a long-term forecasting of changes in the dynamics of permafrost boundaries during operation of cluster sites of northern oil and gas fields. Such a forecast is obtained by simulation of complex system consisting of heat or cold sources and frozen soil, thawing of which can lead to the loss of the bearing capacity and possible technogenic and environmental accidents. For example, the sources of heat can be production wells, and the sources of cold can be seasonal cooling devices that are used to stabilize the soil. To minimize the impact of heat sources on permafrost, various options for thermal insulation are used, and to preserve the original temperature regime of the top layer of soil, riprap materials consisting of sand, concrete, foam concrete, or other heat insulating material are used. The developed set of programs was used in the design of 12 northern oil and gas fields. To solve the described problem in a complex three-dimensional area, substantial computational resources are required. The computing time of one variant can often exceed 10–20 hours of machine time on a supercomputer. To speed up the numerical calculations, multi-core processors are used. Numerical calculations illustrate the possibility of a developed set of programs for making long-term forecasts for determining changes in the boundaries of the permafrost zones, and show that on multi-core processors it is possible to achieve acceleration close to the theoretical one.

Article Details

Author Biographies

Mikhail Yurievich Filimonov

Head of the Department of High-Performance Computer Technologies of the Ural Federal University, Leading Researcher at N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences. Research interests include mathematical modeling and computer science.

Nataliia Anatolyevna Vaganova

Senior Researcher, Ural Federal University and N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences. Research interests include information technology and computational mathematics.

Elena Nikolaevna Akimova

Professor of Department of Information Technologies and Control System of the Institute of Radioelectronics and Information Technologies of the Ural Federal University; Leading researcher at N.N. Krasovskii Institute of Mathematics and Mechanic of the Ural Branch of Russian Academy of Sciences. Research interests include numerical methods, ill-posed problems, parallel computing.

Vladimir Evgenevich Misilov

Research scientist at the Krasovskii Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences; docent at the Ural Federal University, Ekaterinburg, Russia. His research interests are in ill-posed problems, numerical methods, parallel computing.

References

Nelson F.E., Anisimov O.A., Shiklomanov N.I. Subsidence risk from thawing permafrost // Nature. 2001. V. 410. P. 889–890.

Nelson F.E., Anisimov O.A., Shiklomanov N.I. Climate Change and Hazard Zonation in the Circum-Arctic Permafrost Regions // Natural Hazards. 2002. V. 26. P. 203–225.

Akimova E.N, Filimonov M.Y., Misilov V.E., Vaganova N.A. Supercomputer modelling of thermal stabilization processes of permafrost soils // 18th Intern. Conf. Geoinformatics: Theoretical and Applied Aspects, Geoinformatics 2019. Kyiv, Ukraine, 13–16 May 2019. P. 15482.

Akimova E. N., Filimonov M.Yu., Misilov V.E., Vaganova N.A. Simulation of thermal processes in permafrost: parallel implementation on multicore CPU // CEUR Workshop Proceedings. 2018. V. 2274. P. 1–9. URL: http://ceur-ws.org/Vol-2274/paper-01.pdf

Vaganova N., Filimonov M. Simulation of freezing and thawing of soil in Arctic regions // IOP Conf. Ser.: Earth Environ. Sci. 2017. V. 72. P. 012005. doi:10.1088/1755-1315/72/1/012005. URL: http://iopscience.iop.org/article/ 10.1088/1755-1315/72/1/ 012005/pdf

Vaganova N.A., Filimonov M.Yu. Computer simulation of nonstationary thermal fields in design and operation of northern oil and gas fields // AIP Conference Proceedings. 2015. V. 1690. P. 020016. doi: 10.1063/1.4936694

Ваганова Н.А., Филимонов М.Ю. Моделирование эксплуатации инженерных систем в условиях вечной мерзлоты // Вестник НГУ. Сер. Математика, механика, информатика. 2013. Т. 13. № 4. С. 37–42. URL: http://mathnet.ru/links/ c888886340a471d696d18d1435e5eaf2/vngu312.pdf

Filimonov M.Yu., Vaganova N.A. Simulation of Technogenic and Climatic Influences in Permafrost // Lecture Notes in Computer Science. 2015. V. 9045. P. 178–185. doi:10.1007/978-3-319-20239-6_18. URL: https://link.springer.com/chapter/10.1007/978-3-319-20239-6_18

Filimonov M., Vaganova N. Short and Long Scale Regimes of Horizontal Flare System Exploitation in Permafrost // CEUR Workshop Proceedings. 2016. V. 1662. P. 253–260. URL: http://ceur-ws.org/Vol-1662/mod3.pdf

Filimonov M.Yu., Vaganova N.A. Simulation of Influence of Special Regimes of Horizontal Flare Systems on Permafrost // Lecture Notes in Computer Science. 2019. V. 11386. P. 233–240. doi:10.1007/978-3-030-11539-5_25

Vaganova N.A., Filimonov M.Yu. Simulation of Cooling Devices and Effect for Thermal Stabilization of Soil in a Cryolithozone with Anthropogenic Impact // Lecture Notes in Computer Science. 2019. V. 11386. P. 580–587. doi:10.1007/978-3-030-11539-5_68

Vaganova N., Filimonov M. Parallel splitting and decomposition method for computations of heat distribution in permafrost // CEUR Workshop Proceedings. 2015. V. 1513. P. 42–49. URL: http://ceur-ws.org/Vol-1513/paper-05.pdf

Берсенев А.Ю., Ваганова Н.А., Васёв П.А., Игумнов А.С., Филимонов М.Ю. Кластерные вычисления как сервис на примере задачи моделирования тепловых полей от скважин на северных нефтегазовых месторождениях // Научный сервис в сети Интернет: многообразие суперкомпьютерных миров: труды Международной суперкомпьютерной конференции (22–27 сентября 2014 г., г. Новороссийск). М.: Изд-во МГУ, 2014. С. 147–151. URL: http://agora.guru.ru/abrau2014/pdf/147.pdf

Ваганова Н.А., Васев П.А., Гусарова В.В., Игумнов С.Т., Филимонов М.Ю. Использование облачных технологий при моделировании эксплуатации северных нефтегазовых месторождений // Труды ИМех УрО РАН «Проблемы механики и материаловедения». Материалы конференции «Актуальные проблемы математики, механики, информатики». Ижевск, 3–5 марта 2014. 2014. Ижевск: ИМ УрО РАН. С. 23–28.

Самарский А.А., Вабищевич П.Н. Вычислительная теплопередача. М.: Едиториал УРСС, 2003. 784 с.

Самарский А.А., Моисеенко Б.Д. Экономическая схема сквозного счета для многомерной задачи Стефана // ЖВМиМФ. 1965. Т. 5. № 5. С. 816–827.

Filimonov M.Yu., Vaganova N.A. On Boundary Conditions Setting for Numerical Simulation of Thermal Fields Propagation in Permafrost Soils // CEUR-WS Proceedings. 2018. Vol. 2109. P. 115–122. URL: http://ceur-ws.org/Vol-2109/paper-04.pdf

Ваганова Н.А., Филимонов М.Ю. Долгосрочное прогнозирование динамики зон оттаивания многолетнемерзлых пород в устье куста добывающих скважин // XXXI Сибирский теплофизический семинар, посвященный 100-летию академика С.С. Кутателадзе: сб. тр. Всероссийской конференции. Новосибирск: ИТ СО РАН, 2014. С. 42–48.

Башуров Вл.В., Ваганова Н.А., Филимонов М.Ю. Численное моделирование процессов теплообмена в грунте с учетом фильтрации жидкости // Вычислительные технологии. 2011. Т. 16. №. 4. С. 3–18.

Voevodin V.V., Voevodin Vl.V. Parallel computing // St. Petersburg: BHV-Petersburg, 2002. 608 p.

Rodrigue G. (Ed.) Parallel computations. Vol. 1. Elsevier. 2014.

Akimova E.N., Filimonov M.Yu., Misilov V.E., Vaganova N.A. Simulation of thermal processes in permafrost: parallel implementation on multicore CPU // CEUR Workshop Proceedings. 2018. Vol. 2274. P. 1–9. URL:  http://ceur-ws.org/Vol-2274/paper-01.pdf

Chandra R., Dagum L., Kohr D., Menon R., Maydan D., McDonald J. Parallel programming in OpenMP. Morgan Kaufmann. 2001.

Intel Developer Zone. Intel VTune Amplifier. URL: https://software. intel. com/en-us/intel-vtune-amplifier-xe-support/documentation.