Formalization of Processes for Forming User Collections in the Digital Space of Scientific Knowledge

Main Article Content

Nikolay Evgenvich Kalenov
Irina Nikolaevna Sobolevskaya
Aleksandr Nikolaevich Sotnikov

Abstract

The task of forming a digital space of scientific knowledge (DSSK) is analyzed in the paper. The difference of this concept from the general concept of the information space is considered. DSSK is presented as a set containing objects verified by the world scientific community. The form of a structured representation of the digital knowledge space is a semantic network, the basic organization principle of which is based on the classification system of objects and the subsequent construction of their hierarchy, in particular, according to the principle of inheritance. The classification of the objects that make up the content of the DSSK is introduced. A model of the central data collection system is proposed as a collection of disjoint sets containing digital images of real objects and their characteristics, which ensure the selection and visualization of objects in accordance with multi-aspect user requests. The concept of a user collection is defined, and a hierarchical classification of types of user collections is proposed. The use of the concepts of set theory in the construction of DSSK allows you to break down information into levels of detail and formalize the algorithms for processing user queries, which is illustrated by specific examples.

Article Details

Author Biographies

Nikolay Evgenvich Kalenov

Chief Researcher of Joint Super Computer Center of the Russian Academy of Sciences – Branch of Federal State Institution “Scientific Research Institute for System Analysis of the Russian Academy of Sciences”. Research interests include mathematical software, software and systems for distributed computing; e-library database building; methods, tools and systems of large data processing.

Irina Nikolaevna Sobolevskaya

Senior scientist researcher of Joint SuperComputer Center of the Russian Academy of Sciences – Branch of Federal State Institution “Scientific Research Institute for System Analysis of the Russian Academy of Sciences”. Research interests include mathematical software, software and systems for distributed computing; e-library database building; methods, tools and systems of large data processing; 3D modeling.

Aleksandr Nikolaevich Sotnikov

Deputy director for science of Joint SuperComputer Center of the Russian Academy of Sciences – Branch of Federal State Institution “Scientific Research Institute for System Analysis of the Russian Academy of Sciences”. Research interests include mathematical software, software and systems for distributed computing; e-library database building; methods, tools and systems of large data processing; semantic and nerve nets.

References

Антопольский А.Б., Каленов Н.Е., Серебряков В.А., Сотников Н.А. Точка зрения о едином цифровом пространстве научных знаний // Вестник Российской академии наук, 2019 (в печати).

Gauch S., Chaffee J., Pretschner A. Ontology-based personalized search and browsing. // Web Intell Agent Syst. 2003. V. 1. No 3, 4. P. 219–234.

Sun Y., Yu Y., Han J. Ranking-based clustering of heterogeneous information networks with star network schema // KDD '09 Proceedings of the 15th ACM SIGKDD international Conference on Knowledge discovery and data mining. 2009. P 797–806.

Wong W., Liu W., Bennamoun M. Ontology learning from text: a look back and into the future // ACM Computing Surveys (CSUR). 2012. V. 44. Issue 4. Article No 20.

Chi Wang, Jialu Liu, Nihit Desai, Marina Danilevsky, Jiawei Han. Constructing topical hierarchies in heterogeneous information networks // Knowledge and Information Systems. 2015. V. 44. Issue 3. P. 529–558.

Каленов Н.Е., Соболевская И.Н., Сотников А.Н. Иерархические уровни представления информационных объектов в среде электронных библиотек // Информация и инновации. 2018. Т. 13. № 2. C. 25–31.

Антопольский А.Б., Белоозеров В.Н., Маркарова Т.С., Дмитриева Е.Ю. Установление соответствий рубрик ГРНТИ рубрикам других систем классификации научной и технической информации // Научно-техническая информация. Серия 1: организация и методика информационной работы. 2015. № 3. С. 3–18.

Астахова Т.С. Проблемы отражения современного научного знания в классификационных системах: новое в УДК // Сборник трудов конференции «Перспективные направления научных исследований и критические технологии в классификационных системах» / ВИНИТИ РАН, Москва, 25–27 октября 2017 г. С. 32–35.

Александров П.С. Введение в теорию множеств и общую топологию. М.: «Наука», 1977. 368 с.

Ивановский А.А. Объектная модель системы избирательного распространения информации // Научные и технические библиотеки. 2019. № 4. С. 61–75. DOI 10/33186/1027-3689-2019-4-61-75

Захарова С.С. Избирательное распространение информации и информационно-коммуникационные технологии: обзор исследований // Библиотековедение. 2017. № 6. С. 651–658. DOI: 10.25281/0869-608X-2017-66-6-651-658

Каленов Н.Е., Савин Г.И., Серебряков В.А., Сотников А.Н. Принципы построения и формирования электронной библиотеки «Научное наследие России» // Программные продукты, системы и алгоритмы. Электронный журнал. 2012. Т. 4. № 100. С. 30– 40. Url: http://www.swsys-web.ru

Литературная энциклопедия [Электронный ресурс]. (https://dic.academic.ru/dic.nsf/enc_literature/5383/%D0%A1%D0%B5%D1%80%D0%B5%D0%B1%D1%80%D1%8F%D0%BD%D1%8B%D0%B9) (07.11.2019).