Using syntax for sentiment analysis of russian tweets
Main Article Content
Abstract
The paper describes our approach to the task of sentiment analysis of tweets within SentiRuEval – an open evaluation of sentiment analysis systems for the Russian language. We took part in the task of sentiment analysis of Russian tweets concerning two types of organizations: banks and telecommunications companies. On both datasets, the participants were required to perform a three-way classification of tweets: positive, negative or neutral.
We used various statistical methods as basis for our machine learning algorithms. Linguistic features produced by our morpho-syntactic analyzer are applied to the classification. Syntactic relations proved to be a crucial feature for any statistical method evaluated, and SVM-based classification performed better than the others. Normalized words are another important feature for the algorithm.
The evaluation revealed that our method proved to be rather successful: we scored the first in three out of four evaluation measures.
Article Details
References
2. Chetviorkin I., Loukachevitch N. Evaluating sentiment analysis systems in Russian // Proceedings of BSNLP workshop, ACL, Prague. 2013. P. 12-17.
3. Loukachevitch N., Blinov P., Kotelnikov E., Rubtsova Ju., Ivanov V., Tutubalina H. Sentirueval: testing object-oriented sentiment analysis systems in Russian // Computational Linguistics and Intellectual Technologies: Papers from the Annual International Conference «Dialogue». 2015. Issue 14. V. 2. P. 13-24.
4. Pang B., Lee L., Vaithyanathan S. Thumbs up? Sentiment classification using machine learning techniques // Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing. 2002. V. 10. P. 79-86.
5. Mullen T., Collier N. Sentiment analysis using support vector machines with diverse information sources // Proceedings of 9th EMNLP. 2004. P. 412-418.
6. Turney P. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews // Proceedings of the 40th ACL. 2002. P. 417-424.
7. Kudo T., Matsumoto Y. A boosting algorithm for classification of semi-structured text // Proceedings of 9th EMNLP. 2004. P. 301-308.
8. Matsumoto S., Takamura H., Okumura M. Sentiment classification using word sub-sequences and dependency sub-trees // Ho T.-B., Cheung D., Liu H. (eds.) PAKDD 2005. V. 3518. P. 301-311.
9. Mavljutov R.R., Ostapuk N.A. Using basic syntactic relations for sentiment analysis // Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference «Dialog 2013». 2013. P. 91-100.
10. Yussupova N., Bogdanova D., Boyko M. Applying of sentiment analysis for texts in russian based on machine learning approach // Proceedings of The Second International Conference on Advances in Information Mining and Management, Italy. 2012. P. 8-14.
11. Furnkranz J., Mitchell T. M., Rilof E. A case study in using linguistic phrases for text categorization on the WWW // Proceedings of the AAAI Workshop on Learning for Text Categorization, Madison, US. 2998. P. 5-12.
12. Caropreso M.F., Matwin S., Sebastiani F.A. Learner-independent evaluation of the usefulness of statistical phrases for automated text categorization // Amita G. Chin (ed.), Text Databases and Document Management: Theory and Practice. 2006. P. 78-102.
13. Nastase V., Shirabad J.S., Caropreso M.F. Using dependency relations for text classification // Proceedings of the 19th Canadian Conference on Artificial Intelligence, Quebec City. 2006. P. 12-25.
14. Zhao S., Grishman R. Extracting relations with Integrated Information using kernel methods // Proceedings of the 43rd Annual Meeting of the ACL, Ann Arbor, US. 2005. P. 419-426.
15. Jansen B.J., Zhang M., Sobel K., Chowdury A. Twitter power: tweets as electronic word of mouth // Journal of the American Society for Information Science and Technology. 2009. V. 60, No 11. P. 2169-2188.
16. Go A., Bhayani R., Huang L. twitter sentiment classification using distant supervision // Technical report, Stanford. 2009.
17. Jiang L., Yu M., Zhou M., Liu X., Zhao T. Target-dependent Twitter sentiment classification // Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, Portland, US. 2011. P. 151-160.
18. Kouloumpis E., Wilson, T., Moore J. Twitter sentiment analysis: the good the bad and the omg! // Artificial Intelligence. 2011. P. 538-541.
19. Pak A., Paroubek P. Twitter as a corpus for sentiment analysis and opinion mining // Proceedings of LREC, Valetta. 2010. P. 75-100.
20. Адаскина Ю.В., Паничева П.В., Попов А.М. Полуавтоматическое пополнение словарей на основе синтаксических связей // Технологии информационного общества в науке, образовании и культуре: сборник научных статей. Труды XVII Всероссийской объединенной конференции «Интернет и современное общество» (IMS-2014), Санкт-Петербург, 19 – 20 ноября 2014 г. 2014. С. 271-276.
21. Зализняк А.А. Грамматический словарь русского языка. М.: Русский язык, 1980.
22. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R,, Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay É. Scikit-learn: machine learning in Python // Journal of Machine Learning Research. 2011. V. 12 (Oct). P. 2825-2830.
Presenting an article for publication in the Russian Digital Libraries Journal (RDLJ), the authors automatically give consent to grant a limited license to use the materials of the Kazan (Volga) Federal University (KFU) (of course, only if the article is accepted for publication). This means that KFU has the right to publish an article in the next issue of the journal (on the website or in printed form), as well as to reprint this article in the archives of RDLJ CDs or to include in a particular information system or database, produced by KFU.
All copyrighted materials are placed in RDLJ with the consent of the authors. In the event that any of the authors have objected to its publication of materials on this site, the material can be removed, subject to notification to the Editor in writing.
Documents published in RDLJ are protected by copyright and all rights are reserved by the authors. Authors independently monitor compliance with their rights to reproduce or translate their papers published in the journal. If the material is published in RDLJ, reprinted with permission by another publisher or translated into another language, a reference to the original publication.
By submitting an article for publication in RDLJ, authors should take into account that the publication on the Internet, on the one hand, provide unique opportunities for access to their content, but on the other hand, are a new form of information exchange in the global information society where authors and publishers is not always provided with protection against unauthorized copying or other use of materials protected by copyright.
RDLJ is copyrighted. When using materials from the log must indicate the URL: index.phtml page = elbib / rus / journal?. Any change, addition or editing of the author's text are not allowed. Copying individual fragments of articles from the journal is allowed for distribute, remix, adapt, and build upon article, even commercially, as long as they credit that article for the original creation.
Request for the right to reproduce or use any of the materials published in RDLJ should be addressed to the Editor-in-Chief A.M. Elizarov at the following address: amelizarov@gmail.com.
The publishers of RDLJ is not responsible for the view, set out in the published opinion articles.
We suggest the authors of articles downloaded from this page, sign it and send it to the journal publisher's address by e-mail scan copyright agreements on the transfer of non-exclusive rights to use the work.