Using syntax for sentiment analysis of russian tweets

Main Article Content

Юлия Владимировна Адаскина
Полина Вадимовна Паничева
Андрей Михайлович Попов

Abstract

The paper describes our approach to the task of sentiment analysis of tweets within SentiRuEval – an open evaluation of sentiment analysis systems for the Russian language. We took part in the task of sentiment analysis of Russian tweets concerning two types of organizations: banks and telecommunications companies. On both datasets, the participants were required to perform a three-way classification of tweets: positive, negative or neutral.

We used various statistical methods as basis for our machine learning algorithms. Linguistic features produced by our morpho-syntactic analyzer are applied to the classification. Syntactic relations proved to be a crucial feature for any statistical method evaluated, and SVM-based classification performed better than the others. Normalized words are another important feature for the algorithm.

The evaluation revealed that our method proved to be rather successful: we scored the first in three out of four evaluation measures.

Article Details

Author Biographies

Юлия Владимировна Адаскина

Кандидат филологических наук, лингвист-эксперт компании «Инфо-Кьюбс»

Полина Вадимовна Паничева

Аспирант кафедры теоретической и прикладной лингвистики Санкт-Петербургского государственного университета

Андрей Михайлович Попов

Аспирант кафедры математической лингвистики Филологического факультета Санкт-Петербургского государственного университета.

References

1. Chetviorkin I., Braslavskiy P., Loukachevich N. Sentiment analysis track at ROMIP 2011 // Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference «Dialog 2012». 2012. P. 1-14.
2. Chetviorkin I., Loukachevitch N. Evaluating sentiment analysis systems in Russian // Proceedings of BSNLP workshop, ACL, Prague. 2013. P. 12-17.
3. Loukachevitch N., Blinov P., Kotelnikov E., Rubtsova Ju., Ivanov V., Tutubalina H. Sentirueval: testing object-oriented sentiment analysis systems in Russian // Computational Linguistics and Intellectual Technologies: Papers from the Annual International Conference «Dialogue». 2015. Issue 14. V. 2. P. 13-24.
4. Pang B., Lee L., Vaithyanathan S. Thumbs up? Sentiment classification using machine learning techniques // Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing. 2002. V. 10. P. 79-86.
5. Mullen T., Collier N. Sentiment analysis using support vector machines with diverse information sources // Proceedings of 9th EMNLP. 2004. P. 412-418.
6. Turney P. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews // Proceedings of the 40th ACL. 2002. P. 417-424.
7. Kudo T., Matsumoto Y. A boosting algorithm for classification of semi-structured text // Proceedings of 9th EMNLP. 2004. P. 301-308.
8. Matsumoto S., Takamura H., Okumura M. Sentiment classification using word sub-sequences and dependency sub-trees // Ho T.-B., Cheung D., Liu H. (eds.) PAKDD 2005. V. 3518. P. 301-311.
9. Mavljutov R.R., Ostapuk N.A. Using basic syntactic relations for sentiment analysis // Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference «Dialog 2013». 2013. P. 91-100.
10. Yussupova N., Bogdanova D., Boyko M. Applying of sentiment analysis for texts in russian based on machine learning approach // Proceedings of The Second International Conference on Advances in Information Mining and Management, Italy. 2012. P. 8-14.
11. Furnkranz J., Mitchell T. M., Rilof E. A case study in using linguistic phrases for text categorization on the WWW // Proceedings of the AAAI Workshop on Learning for Text Categorization, Madison, US. 2998. P. 5-12.
12. Caropreso M.F., Matwin S., Sebastiani F.A. Learner-independent evaluation of the usefulness of statistical phrases for automated text categorization // Amita G. Chin (ed.), Text Databases and Document Management: Theory and Practice. 2006. P. 78-102.
13. Nastase V., Shirabad J.S., Caropreso M.F. Using dependency relations for text classification // Proceedings of the 19th Canadian Conference on Artificial Intelligence, Quebec City. 2006. P. 12-25.
14. Zhao S., Grishman R. Extracting relations with Integrated Information using kernel methods // Proceedings of the 43rd Annual Meeting of the ACL, Ann Arbor, US. 2005. P. 419-426.
15. Jansen B.J., Zhang M., Sobel K., Chowdury A. Twitter power: tweets as electronic word of mouth // Journal of the American Society for Information Science and Technology. 2009. V. 60, No 11. P. 2169-2188.
16. Go A., Bhayani R., Huang L. twitter sentiment classification using distant supervision // Technical report, Stanford. 2009.
17. Jiang L., Yu M., Zhou M., Liu X., Zhao T. Target-dependent Twitter sentiment classification // Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, Portland, US. 2011. P. 151-160.
18. Kouloumpis E., Wilson, T., Moore J. Twitter sentiment analysis: the good the bad and the omg! // Artificial Intelligence. 2011. P. 538-541.
19. Pak A., Paroubek P. Twitter as a corpus for sentiment analysis and opinion mining // Proceedings of LREC, Valetta. 2010. P. 75-100.
20. Адаскина Ю.В., Паничева П.В., Попов А.М. Полуавтоматическое пополнение словарей на основе синтаксических связей // Технологии информационного общества в науке, образовании и культуре: сборник научных статей. Труды XVII Всероссийской объединенной конференции «Интернет и современное общество» (IMS-2014), Санкт-Петербург, 19 – 20 ноября 2014 г. 2014. С. 271-276.
21. Зализняк А.А. Грамматический словарь русского языка. М.: Русский язык, 1980.
22. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R,, Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay É. Scikit-learn: machine learning in Python // Journal of Machine Learning Research. 2011. V. 12 (Oct). P. 2825-2830.


Most read articles by the same author(s)