Использование распределенных объектов для интероперабельности электронных библиотек

Main Article Content

Article Details

References

Turney P.D. Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews // Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2002. P. 417-424.

Pang B., Lee L., Vaithyanathan S. Thumbs up?: sentiment classification using machine learning techniques // Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2002. V. 10. P. 79-86.

Рубцова Ю.В. Разработка и исследование предметно независимого классификатора текстов по тональности // Труды СПИИ РАН. 2014. Т. 5, № 36. С. 59-77.

Wilson T., Wiebe J., Hoffmann P. Recognizing contextual polarity: an exploration of features for phrase-level sentiment analysis // Computational linguistics. 2009. V. 35, No 3. P. 399-433.

Liu B. Sentiment analysis and opinion mining // Synthesis Lectures on Human Language Technologies. 2012. V. 5, No 1. P. 1-167.

Zhang L., Liu B. Aspect and entity extraction for opinion mining // Data Mining and Knowledge Discovery for Big data. Springer Berlin Heidelberg, 2014. P. 1-40.

Marrese-Taylor E., Velásquez J.D., Bravo-Marquez F. A novel deterministic approach for aspect-based opinion mining in tourism products reviews // Expert Systems with Applications. 2014. V. 41, No 17. P. 7764-7775.

Loukachevitch N., Blinov P., Kotelnikov E., Rubtsova Yu.V., Ivanov V.V., Tutubalina E. SentiRuEval: testing object-oriented sentiment analysis systems in Russian // Proceedings of International Conference Dialog–2015. 2015. P. 3-9.

Hu M., Liu B. Mining and summarizing customer reviews // Proceedings of the tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2004. P. 168-177.

Popescu A.M., Etzioni O. Extracting product features and opinions from reviews // Natural Language Processing and Text Mining. Springer London, 2007. P. 9-28.

Moghaddam S., Ester M. ILDA: interdependent LDA model for learning latent aspects and their ratings from online product reviews // Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2011. P. 665-674.

Jin W., Ho H.H., Srihari R.K. OpinionMiner: a novel machine learning system for web opinion mining and extraction // Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2009. P. 1195-1204.

Jakob N., Gurevych I. Extracting opinion targets in a single-and cross-domain setting with conditional random fields // Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2010. P. 1035-1045.

Titov I., McDonald R. Modeling online reviews with multi-grain topic models // Proceedings of the 17th International Conference on World Wide Web. ACM, 2008. P. 111-120.

Brody S., Elhadad N. An unsupervised aspect-sentiment model for online reviews // Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, 2010. P. 804-812.

Hofmann T. Unsupervised learning by probabilistic latent semantic analysis // Machine learning. 2001. V. 42, No 1-2. P. 177-196.

Blei D.M., Ng A.Y., Jordan M.I. Latent Dirichlet allocation // Journal of Machine Learning Research. 2003. V. 3. P. 993-1022.

Zhao W.X. et al. Jointly modeling aspects and opinions with a MaxEnt-LDA hybrid // Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2010. P. 56-65.

Mukherjee A., Liu B. Aspect extraction through semi-supervised modeling // Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-Volume 1. Association for Computational Linguistics, 2012. P. 339-348.

Sutton C., McCallum A. An introduction to conditional random fields for relational learning // Introduction to Statistical Relational Learning. 2006. P. 93-128.

McCallum A.K. MALLET: A Machine Learning for Language Toolkit. 2002.

Serge Sharoff, Mikhail Kopotev, Tomaz Erjavec, Anna Feldman, Dagmar Divjak. Designing and evaluating a russian tagset // LREC. 2008.



Most read articles by the same author(s)