• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Программное средство оптимизации процессов видеопроизводства

Рустем Фаридович Давлетшин, Ирина Сергеевна Шахова
478-502
Аннотация:

Предложены программные механизмы, направленные на оптимизацию процессов видеопроизводства для авторов художественных видеоматериалов – материалов, предполагающих предварительную постановочную работу. Разработан механизм создания анимированных трехмерных планов съемки (раскадровок) с использованием дополненной реальности для позиционирования и анимации перемещения актеров. С целью преодоления ограничений операционной системы iOS, связанных с доступом к сенсорам, разработан механизм раздельного захвата аудио- и видеопотоков с датчиков устройства для проведения записи, а также их последующей синхронизации по временным меткам для сохранения в память устройства. Отслеживание соблюдения правил композиционного построения и анализ качества изображения на предмет расфокусировки камеры реализованы с использованием технологий компьютерного зрения. Также представлены механизмы работы со сценарием, включающие алгоритмы обработки текста для вывода на экран в виде субтитров, а также распознавания речи актеров и сравнения её с текстом сценария.

Ключевые слова: видеопроизводство, мобильное кино, дополненная реальность, раскадровка, видеозапись, автоматизация, программное решение.

Учёт структуры документа в методе автоматического аннотирования математических понятий в образовательных текстах

Константин Сергеевич Николаев
558-577
Аннотация:

Обогащение образовательных текстов семантическим содержимым (в частности, дополнение документа гиперссылками на страницы сервиса, отображающего подробную информацию о понятиях, используемых в тексте) способствует повышению эффективности усвоения материала обучающимися. Существующие методы семантической разметки образовательных текстов не учитывают структурные особенности таких документов, что приводит к избыточному распознаванию понятий.


В статье описано развитие метода автоматического аннотирования математических понятий в образовательных математических текстах путем добавления функционала для учета структуры образовательного документа. Основное назначение метода заключается в обработке образовательных материалов курса дистанционного образования «Технология решения планиметрических задач». Соблюдение единого шаблона при создании страниц курса позволяет применить анализ веб-разметки страниц и ключевых слов, примененных создателями курса. Основной задачей в данном процессе является определение типа ячеек таблицы, в которых находятся текстовые фрагменты образовательных материалов. В соответствии с рекомендациями создателей курса, определения необходимо выделять в ячейках, содержащих постановку задачи, а также в тех блоках, где указаны входные данные задачи. Определение типа ячеек таблиц производится с помощью анализа их атрибутов и поиска ключевых слов в их содержимом. Такое ограничение распознаваемых фрагментов текста позволяет улучшить восприятие страниц курса учеником и повысить качество усвоения учебного материала.

Ключевые слова: семантический анализ, математическая онтология, дидактические отношения, математическое образование, разметка документа.

Автоматизация сортировки материалов по тексту сценария для видеомонтажа

Андрей Дмитриевич Неманов, Ирина Сергеевна Шахова
533-557
Аннотация:

Процесс видеомонтажа включает множество трудоемких операций по сортировке и подготовке материалов, что требует значительных временных затрат. В статье описана разработка программного решения для автоматизации этих процессов с использованием технологии машинного обучения. Основное внимание уделено созданию системы, способной классифицировать и сортировать медиафайлы по тексту сценария, тем самым повышая эффективность подготовки материалов к монтажу. Система включает модули распознавания речи, классификации аудио и видео, а также алгоритмы определения соответствия сценарию. Тестирование показало, что предложенная система правильно классифицирует медиафайлы в большинстве случаев, что позволяет существенно сократить время на черновой монтаж.

Ключевые слова: видеомонтаж, автоматизация, машинное обучение, распознавание речи, классификация аудио, классификация видео, coreml, параллельные вычисления, сценарий, soundex, tf-idf, косинусное сходство, обработка естественного языка.

Применение алгоритма Дугласа–Пеккера в вопросах онлайн-аутентификации инструментов удалённой работы при подготовке специалистов укрупнённой группы специальностей 10.00.00 «Информационная безопасность»

Антон Григорьевич Уймин, Владимир Сергеевич Греков
679-694
Аннотация:

В условиях перехода образовательных систем на дистанционное обучение, а также развития тренда на удалённую работу, возникла острая потребность в разработке надежных технологий биометрической идентификации и аутентификации для верификации исполнителей работ в режиме удаленной работы. Такие технологии позволяют обеспечить высокую степень защиты и удобство использования, что делает вопросы их разработки и оптимизации крайне важными.


Проблема заключается в необходимости повышения точности и эффективности систем распознавания движений манипулятора «мышь» без использования специализированных устройств в максимально короткий промежуток времени. Для ее решения требуется эффективная предобработка таких движений, чтобы упростить их траектории, сохранив при этом их ключевые особенности.


В статье предложено использование алгоритма Дугласа–Пеккера для предварительной обработки данных траекторий движений «мыши». Этот алгоритм позволяет значительно уменьшить количество точек в траекториях, упрощая их при сохранении основной формы движений. Данные с упрощенными траекториями затем используются для обучения нейронных сетей.


Экспериментальная часть работы показала, что применение алгоритма Дугласа–Пеккера позволяет сократить количество точек в траекториях на 60%, что приводит к увеличению точности распознавания движений с 70% до 82%. Такое упрощение данных способствует ускорению процесса обучения нейронных сетей и повышению их операционной эффективности.


Проведенное исследование подтвердило эффективность использования алгоритма Дугласа–Пеккера для предварительной обработки данных в задачах распознавания движений «мыши». Полученные результаты могут найти применение в разработке более интуитивно понятных и адаптивных пользовательских интерфейсов.


Предложены также направления для дальнейших исследований, включая оптимизацию параметров алгоритма для различных типов движений и исследование возможности его комбинирования с другими методами машинного обучения.

Ключевые слова: аутентификация, биометрическая идентификация, удалённая работа, дистанционное обучение, алгоритм Дугласа–Пеккера, предобработка данных, нейросеть, HID-устройство, траектория движений «мыши», оптимизация данных.

Применение методов компьютерного зрения к распознаванию старотатарского текста

Искандер Айратович Валишин
448-477
Аннотация:

Разработан инструмент, распознающий строки, слова и арабские символы с отсканированного изображения. Рассмотрены возможности и перспективы применения инструмента в исследовательской деятельности. Приведены результаты экспериментов по проверке работоспособности инструмента на примере старотатарских оцифрованных произведений.

Ключевые слова: YOLO, распознавание арабских символов, нейронные сети, компьютерное зрение.

Методика сравнения программных решений распознавания текстов научных публикаций по качеству извлечения метаданных

Илия Игоревич Кузнецов, Олег Пантелеевич Новиков, Дмитрий Юрьевич Ильин
654-680
Аннотация:

Метаданные научных публикаций используются для построения каталогов, определения цитируемости публикаций и решения других задач. Автоматизация извлечения метаданных из PDF-файлов позволяет ускорить выполнение обозначенных задач, а от качества извлеченных данных зависит возможность их дальнейшего использования. Проанализированы существующие программные решения, в итоге отобраны три: GROBID, CERMINE, ScientificPdfParser. Предложена методика сравнения этих программных решений распознавания текстов научных публикаций по качеству извлечения метаданных. На основе методики проведен эксперимент по извлечению четырех типов метаданных (название, аннотация, дата публикации, имена авторов). Для сравнения программных решений использован набор из 112457 публикаций с разбиением на 23 предметные области, сформированный на основе данных Semantic Scholar. Приведен пример выбора эффективного программного решения извлечения метаданных в условиях заданных приоритетов для предметных областей и типов метаданных с использованием взвешенной суммы. Определено, что для приведенного примера CERMINE показывает эффективность на 10,5% выше, чем GROBID, и на 9,6% выше, чем ScientificPdfParser.

Ключевые слова: распознавание текста, научные публикации, метаданные, качество извлечения данных, методика.
1 - 6 из 6 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества