• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Разработка методики сегментации пользователей с помощью алгоритмов кластеризации и расширенной аналитики

Даниил Андреевич Клинов, Карен Альбертович Григорян
137-147
Аннотация:

Статья посвящена созданию эффективного решения по сегментации пользователей. Представлены анализ существующих сервисов сегментации пользователей и подходов к их сегментации (ABCDx сегментация, демографическая сегментация, сегментация на основании карты пути пользователя), а также анализ алгоритмов кластеризации (K-means, Mini-Batch K-means, DBSCAN, Agglomerative Clustering, Spectral Clustering). Исследование названных подходов нацелено на создание решения по сегментации, «гибкого» и адаптирующегося под каждую пользовательскую выборку. Также применены дисперсионный анализ (тест ANOVA) и разбор метрик кластеризации для оценки качества сегментации пользователей. С помощью указанных методов разработано эффективное решение по сегментации пользователей с использованием технологии расширенной аналитики и машинного обучения.

Ключевые слова: Сегментация, кластеризация, дисперсионный анализ, машинное обучение, расширенная аналитика, тест ANOVA, продуктовая аналитика.

Информационно-аналитическая система сегментации изображений с помощью нейро-нечеткого подхода

Максим Владимирович Бобырь, Богдан Андреевич Бондаренко
601-621
Аннотация:

Представлена информационно-аналитическая система (ИАС) для высокоскоростной сегментации изображений в градациях серого, основанной на модифицированном методе дефаззификации с использованием треугольных функций принадлежности. Цель исследования заключается в анализе влияния упрощения формулы дефаззификации на точность и контрастность выделения объектов. Предложенный подход включает адаптивное обучение весового коэффициента, позволяющее динамически корректировать процесс дефаззификации в зависимости от целевых значений. Проведено сравнение базового метода усреднения значений принадлежности и модифицированного варианта с учетом нелинейных весов. Эксперименты, проведенные на изображениях формата 1024x720, продемонстрировали, что разработанная ИАС обеспечивает высокую точность сегментации и улучшенную контрастность объектов при минимальных вычислительных затратах. Результаты подтверждают превосходство предложенного метода над традиционными подходами, подчеркивая перспективы применения искусственного интеллекта в задачах компьютерного зрения.

Ключевые слова: ИАС, нейро-нечеткий алгоритм, сегментация изображений, дефаззификация, искусственный интеллект, метод отношения площадей.

Поиск слов в рукописном тексте на основе штриховой сегментации

Иван Дмитриевич Морозов, Леонид Моисеевич Местецкий
1435-1453
Аннотация:

Рукописные архивные документы составляют фундаментальную часть культурного наследия человечества, однако их анализ остается трудоемкой задачей для профессиональных исследователей-историков, филологов и лингвистов. В отличие от коммерческих приложений систем OCR (Optical Character Recognition, оптического распознавания символов), работа с историческими рукописями требует принципиально иного подхода из-за чрезвычайного многообразия почерков, наличия правок и деградации материалов.


Предложен метод поиска в рукописных текстах, основанный на штриховой сегментации. Вместо полного распознавания текста, часто недостижимого для исторических документов, метод позволяет эффективно отвечать на поисковые запросы исследователей. Ключевая идея заключается в декомпозиции текста на элементарные штрихи, формировании семантических векторных представлений с помощью контрастного обучения, последующей кластеризации и классификации для создания адаптивного словаря почерка.


Экспериментально показано, что поиск сравнением кортежей редуцированных последовательностей наиболее информативных штрихов по расстоянию Левенштейна обеспечивает достаточное качество для рассматриваемой задачи. Метод демонстрирует устойчивость к индивидуальным особенностям почерка и вариациям написания, что особенно важно для работы с авторскими архивами и историческими документами.


Предложенный подход открывает новые возможности для ускорения научных исследований в гуманитарной сфере, позволяя сократить время поиска нужной информации с недель до минут, что качественно меняет возможности исследовательской работы с большими архивами рукописных документов.

Ключевые слова: рукописный текст, поиск, штриховый анализ, сегментация, векторное представление, контрастное обучение, кластеризация.

Экспериментальное исследование порогового метода HSV и нейронной сети U-Net в задаче распознавания пожаров

Максим Владимирович Бобырь, Наталья Анатольевна Милостная, Богдан Андреевич Бондаренко, Максим Максимович Бобырь
829-851
Аннотация:

Проведен сравнительный анализ методов сегментации изображений пожара с использованием пороговой обработки в цветовом пространстве HSV и нейронной сети U-Net. Цель исследования заключалась в оценке эффективности этих подходов по времени выполнения и точности детекции огня на основе метрик RMSE, IoU, Dice и MAPE. Эксперименты были проведены на четырех различных изображениях пожара с вручную подготовленными истинными масками пожаров. Результаты показали, что метод HSV обеспечивает высокую скорость обработки (0.0010–0.0020 с), но склонен к детекции не только огня, но и дыма, что снижает его точность (IoU 0.0863–0.3357, Dice 0.1588–0.5026). Нейронная сеть U-Net демонстрирует более высокую точность сегментации огня (IoU – до 0.6015, Dice – до 0.7512) за счет избирательного выделения пламени, однако требует значительно большего времени (1.2477–1.3733 с) и может недооценивать общую площадь пожара (MAPE – до 78.5840%). Визуальная оценка подтвердила различия в поведении методов: HSV захватывает дым как часть целевой области, тогда как U-Net фокусируется исключительно на огне. Выбор между методами зависит от приоритетов задачи: скорости или точности. Предложены направления дальнейших исследований, включая оптимизацию U-Net и разработку гибридных подходов.

Ключевые слова: сегментирование, локализация пожаров, HSV-сегментация, U-Net.

Виртуальная выставка как средство интеграции в единое цифровое пространство научных знаний и информационные системы в области науки и культуры

Ирина Николаевна Соболевская, Александр Николаевич Сотников
98-114
Аннотация:

Рассмотрен принцип формирования виртуальных выставок как средства интеграции в Единое Цифровое Пространство Научных Знаний (ЕЦПНЗ) информационных систем в области науки и культуры с целью продвижения науки, обеспечения доступа к информации в разных областях науки, привлечения внимания к актуальным проблемам и достижениям в научной сфере. Представлены основные методы создания виртуальных выставок, включая выбор контента и разделение на основные разделы. Кроме того, предложена классификация виртуальных выставок на автономные, удаленные и комбинированные. Особое внимание уделено методологии формирования виртуальных выставок в МСЦ РАН. На примере межведомственной комбинированной виртуальной выставки предоставлено подробное описание выставки «Госпожа Пенициллин», посвященной создательнице пенициллина З. В. Ермольевой.

Ключевые слова: виртуальная выставка, Единое Цифровое Пространство Научных Знаний, Госпожа Пенициллин, связанные данные, З.В. Ермольева.

Определение дефектов на стальных листах с использованием сверточных нейронных сетей

Родион Дмитриевич Гаскаров, Алексей Михайлович Бирюков, Алексей Федорович Никонов, Даниил Владиславович Агниашвили, Данил Айдарович Хайрисламов
1155-1171
Аннотация:

Сталь в наши дни является одним из важнейших производственных материалов, который используется повсеместно, от медицины до промышленных отраслей. Своевременное обнаружение и распознавание дефектов на стальных листах после проката – одна из ключевых проблем этого производства с учетом его сложности и необходимости затрат большого количества времени на проведение вручную проверок каждого листа и каждой заготовки. Одними из целей настоящей работы были автоматизация и упрощение данного процесса. Для решения соответствующих задач была использована, в первую очередь, модель сверточной нейронной сети под названием UNet, которая уже зарекомендовала себя как отличный инструмент решения таких задач — при высокой результативности она требует меньшего количества учебных данных. В основе этой модели лежат последовательная, производимая в несколько шагов свертка изображения до приемлемого размера (иными словами, сжатие или кодирование), а затем развертка, восстановление изображения к исходному размеру и соотношению сторон, после чего на выходе будет получена маска изображения с классами элементов, которые необходимо было найти. В дополнение к этой нейронной сети в качестве кодирующего (сворачивающего) слоя была использована другая модель — ResNet34, предварительно обученная на датасете (наборе данных) ImageNet1000. В этой модели также был модифицирован выходной слой — вместо 34 слоев с классами на выходе возвращалось лишь 4, что сократило время обработки и позволило использовать наиболее удачные определения в результатах. Используя данный подход и проведя все необходимые проверки, при подведении итогов, мы получили результат в 94,8% точности определения дефектов на стальных листах.

Ключевые слова: сверточные нейронные сети, нейронные сети, машинное обучение, сталь, искусственный интеллект, UNet, ResNet, определение дефектов, сегментация, классификация.

Автоматическое извлечение аргументативных отношений из текстов научной коммуникации

Юрий Алексеевич Загорулько, Елена Анатольевна Сидорова, Ирина Равильевна Ахмадеева
1070-1084
Аннотация:

Сложность задачи извлечения аргументативных структур связана с такими проблемами, как выделение аргументативных сегментов, прогнозирование дальних связей между неконтактными сегментами, обучение на данных, размеченных с низкой степенью согласованности между аннотаторами. В настоящей работе рассмотрен подход к извлечению аргументативных отношений из достаточно больших текстов, относящихся к области научной коммуникации. Проведен сравнительный анализ методов тонкой настройки с использованием предобученной языковой модели типа Longformer, позволяющей учитывать длинные контексты, и двух методов, позволяющих учитывать расхождения аннотаторов в разметке аргументов за счет использования так называемых мягких меток, полученных путем равномерного сглаживания меток и усреднения экспертных оценок. Эксперименты проводились на четырех наборах данных, содержащих положительные и отрицательные примеры пар утверждений (посылка, заключение) и различающихся способами сегментации и средним размером текста. Наилучшие результаты получены на модели с усреднением экспертных оценок. В то же время отмечено, что модель, использующая сглаженные метки, также повышает точность классификаторов, но ухудшает полноту.

Ключевые слова: анализ аргументации, извлечение аргументативных отношений, научная коммуникация, проблемы сегментации, мягкая метка, сглаживание меток, языковая модель.
1 - 7 из 7 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества