• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Разработка методики сегментации пользователей с помощью алгоритмов кластеризации и расширенной аналитики

Даниил Андреевич Клинов, Карен Альбертович Григорян
137-147
Аннотация:

Статья посвящена созданию эффективного решения по сегментации пользователей. Представлены анализ существующих сервисов сегментации пользователей и подходов к их сегментации (ABCDx сегментация, демографическая сегментация, сегментация на основании карты пути пользователя), а также анализ алгоритмов кластеризации (K-means, Mini-Batch K-means, DBSCAN, Agglomerative Clustering, Spectral Clustering). Исследование названных подходов нацелено на создание решения по сегментации, «гибкого» и адаптирующегося под каждую пользовательскую выборку. Также применены дисперсионный анализ (тест ANOVA) и разбор метрик кластеризации для оценки качества сегментации пользователей. С помощью указанных методов разработано эффективное решение по сегментации пользователей с использованием технологии расширенной аналитики и машинного обучения.

Ключевые слова: Сегментация, кластеризация, дисперсионный анализ, машинное обучение, расширенная аналитика, тест ANOVA, продуктовая аналитика.

Информационно-аналитическая система сегментации изображений с помощью нейро-нечеткого подхода

Максим Владимирович Бобырь, Богдан Андреевич Бондаренко
601-621
Аннотация:

Представлена информационно-аналитическая система (ИАС) для высокоскоростной сегментации изображений в градациях серого, основанной на модифицированном методе дефаззификации с использованием треугольных функций принадлежности. Цель исследования заключается в анализе влияния упрощения формулы дефаззификации на точность и контрастность выделения объектов. Предложенный подход включает адаптивное обучение весового коэффициента, позволяющее динамически корректировать процесс дефаззификации в зависимости от целевых значений. Проведено сравнение базового метода усреднения значений принадлежности и модифицированного варианта с учетом нелинейных весов. Эксперименты, проведенные на изображениях формата 1024x720, продемонстрировали, что разработанная ИАС обеспечивает высокую точность сегментации и улучшенную контрастность объектов при минимальных вычислительных затратах. Результаты подтверждают превосходство предложенного метода над традиционными подходами, подчеркивая перспективы применения искусственного интеллекта в задачах компьютерного зрения.

Ключевые слова: ИАС, нейро-нечеткий алгоритм, сегментация изображений, дефаззификация, искусственный интеллект, метод отношения площадей.

Экспериментальное исследование порогового метода HSV и нейронной сети U-Net в задаче распознавания пожаров

Максим Владимирович Бобырь, Наталья Анатольевна Милостная, Богдан Андреевич Бондаренко, Максим Максимович Бобырь
829-851
Аннотация:

Проведен сравнительный анализ методов сегментации изображений пожара с использованием пороговой обработки в цветовом пространстве HSV и нейронной сети U-Net. Цель исследования заключалась в оценке эффективности этих подходов по времени выполнения и точности детекции огня на основе метрик RMSE, IoU, Dice и MAPE. Эксперименты были проведены на четырех различных изображениях пожара с вручную подготовленными истинными масками пожаров. Результаты показали, что метод HSV обеспечивает высокую скорость обработки (0.0010–0.0020 с), но склонен к детекции не только огня, но и дыма, что снижает его точность (IoU 0.0863–0.3357, Dice 0.1588–0.5026). Нейронная сеть U-Net демонстрирует более высокую точность сегментации огня (IoU – до 0.6015, Dice – до 0.7512) за счет избирательного выделения пламени, однако требует значительно большего времени (1.2477–1.3733 с) и может недооценивать общую площадь пожара (MAPE – до 78.5840%). Визуальная оценка подтвердила различия в поведении методов: HSV захватывает дым как часть целевой области, тогда как U-Net фокусируется исключительно на огне. Выбор между методами зависит от приоритетов задачи: скорости или точности. Предложены направления дальнейших исследований, включая оптимизацию U-Net и разработку гибридных подходов.

Ключевые слова: сегментирование, локализация пожаров, HSV-сегментация, U-Net.

Поиск слов в рукописном тексте на основе штриховой сегментации

Иван Дмитриевич Морозов, Леонид Моисеевич Местецкий
1435-1453
Аннотация:

Рукописные архивные документы составляют фундаментальную часть культурного наследия человечества, однако их анализ остается трудоемкой задачей для профессиональных исследователей-историков, филологов и лингвистов. В отличие от коммерческих приложений систем OCR (Optical Character Recognition, оптического распознавания символов), работа с историческими рукописями требует принципиально иного подхода из-за чрезвычайного многообразия почерков, наличия правок и деградации материалов.


Предложен метод поиска в рукописных текстах, основанный на штриховой сегментации. Вместо полного распознавания текста, часто недостижимого для исторических документов, метод позволяет эффективно отвечать на поисковые запросы исследователей. Ключевая идея заключается в декомпозиции текста на элементарные штрихи, формировании семантических векторных представлений с помощью контрастного обучения, последующей кластеризации и классификации для создания адаптивного словаря почерка.


Экспериментально показано, что поиск сравнением кортежей редуцированных последовательностей наиболее информативных штрихов по расстоянию Левенштейна обеспечивает достаточное качество для рассматриваемой задачи. Метод демонстрирует устойчивость к индивидуальным особенностям почерка и вариациям написания, что особенно важно для работы с авторскими архивами и историческими документами.


Предложенный подход открывает новые возможности для ускорения научных исследований в гуманитарной сфере, позволяя сократить время поиска нужной информации с недель до минут, что качественно меняет возможности исследовательской работы с большими архивами рукописных документов.

Ключевые слова: рукописный текст, поиск, штриховый анализ, сегментация, векторное представление, контрастное обучение, кластеризация.

Автоматическое извлечение аргументативных отношений из текстов научной коммуникации

Юрий Алексеевич Загорулько, Елена Анатольевна Сидорова, Ирина Равильевна Ахмадеева
1070-1084
Аннотация:

Сложность задачи извлечения аргументативных структур связана с такими проблемами, как выделение аргументативных сегментов, прогнозирование дальних связей между неконтактными сегментами, обучение на данных, размеченных с низкой степенью согласованности между аннотаторами. В настоящей работе рассмотрен подход к извлечению аргументативных отношений из достаточно больших текстов, относящихся к области научной коммуникации. Проведен сравнительный анализ методов тонкой настройки с использованием предобученной языковой модели типа Longformer, позволяющей учитывать длинные контексты, и двух методов, позволяющих учитывать расхождения аннотаторов в разметке аргументов за счет использования так называемых мягких меток, полученных путем равномерного сглаживания меток и усреднения экспертных оценок. Эксперименты проводились на четырех наборах данных, содержащих положительные и отрицательные примеры пар утверждений (посылка, заключение) и различающихся способами сегментации и средним размером текста. Наилучшие результаты получены на модели с усреднением экспертных оценок. В то же время отмечено, что модель, использующая сглаженные метки, также повышает точность классификаторов, но ухудшает полноту.

Ключевые слова: анализ аргументации, извлечение аргументативных отношений, научная коммуникация, проблемы сегментации, мягкая метка, сглаживание меток, языковая модель.

Виртуальная выставка как средство интеграции в единое цифровое пространство научных знаний и информационные системы в области науки и культуры

Ирина Николаевна Соболевская, Александр Николаевич Сотников
98-114
Аннотация:

Рассмотрен принцип формирования виртуальных выставок как средства интеграции в Единое Цифровое Пространство Научных Знаний (ЕЦПНЗ) информационных систем в области науки и культуры с целью продвижения науки, обеспечения доступа к информации в разных областях науки, привлечения внимания к актуальным проблемам и достижениям в научной сфере. Представлены основные методы создания виртуальных выставок, включая выбор контента и разделение на основные разделы. Кроме того, предложена классификация виртуальных выставок на автономные, удаленные и комбинированные. Особое внимание уделено методологии формирования виртуальных выставок в МСЦ РАН. На примере межведомственной комбинированной виртуальной выставки предоставлено подробное описание выставки «Госпожа Пенициллин», посвященной создательнице пенициллина З. В. Ермольевой.

Ключевые слова: виртуальная выставка, Единое Цифровое Пространство Научных Знаний, Госпожа Пенициллин, связанные данные, З.В. Ермольева.

Определение дефектов на стальных листах с использованием сверточных нейронных сетей

Родион Дмитриевич Гаскаров, Алексей Михайлович Бирюков, Алексей Федорович Никонов, Даниил Владиславович Агниашвили, Данил Айдарович Хайрисламов
1155-1171
Аннотация:

Сталь в наши дни является одним из важнейших производственных материалов, который используется повсеместно, от медицины до промышленных отраслей. Своевременное обнаружение и распознавание дефектов на стальных листах после проката – одна из ключевых проблем этого производства с учетом его сложности и необходимости затрат большого количества времени на проведение вручную проверок каждого листа и каждой заготовки. Одними из целей настоящей работы были автоматизация и упрощение данного процесса. Для решения соответствующих задач была использована, в первую очередь, модель сверточной нейронной сети под названием UNet, которая уже зарекомендовала себя как отличный инструмент решения таких задач — при высокой результативности она требует меньшего количества учебных данных. В основе этой модели лежат последовательная, производимая в несколько шагов свертка изображения до приемлемого размера (иными словами, сжатие или кодирование), а затем развертка, восстановление изображения к исходному размеру и соотношению сторон, после чего на выходе будет получена маска изображения с классами элементов, которые необходимо было найти. В дополнение к этой нейронной сети в качестве кодирующего (сворачивающего) слоя была использована другая модель — ResNet34, предварительно обученная на датасете (наборе данных) ImageNet1000. В этой модели также был модифицирован выходной слой — вместо 34 слоев с классами на выходе возвращалось лишь 4, что сократило время обработки и позволило использовать наиболее удачные определения в результатах. Используя данный подход и проведя все необходимые проверки, при подведении итогов, мы получили результат в 94,8% точности определения дефектов на стальных листах.

Ключевые слова: сверточные нейронные сети, нейронные сети, машинное обучение, сталь, искусственный интеллект, UNet, ResNet, определение дефектов, сегментация, классификация.
1 - 7 из 7 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2026 Казанский (Приволжский) федеральный университет; Институт развития информационного общества