• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Определение тематической близости научных журналов и конференций с использованием анализа графа соавторства

Александр Сергеевич Козицын, Сергей Александрович Афонин, Дмитрий Алексеевич Шачнев
514-525
Аннотация: Количество публикуемых в мире журналов очень велико. В этой связи, необходим программный инструментарий, который позволит анализировать тематические связи журналов. Разработанный авторами и представленный в этой работе алгоритм использует для анализа тематической близости журналов граф соавторства. Алгоритм нечувствителен к языку журнала и подбирает похожие журналы на разных языках, что сложно реализуемо для алгоритмов, основанных на анализе полнотекстовой информации. Апробация алгоритма проводилась в наукометрической системе ИАС ИСТИНА. В разработанном для этих целей интерфейсе пользователь может выбрать один близкий ему по тематике журнал, и система автоматически сформирует подборку журналов, которые могут представлять интерес для пользователя как с точки зрения изучения имеющихся в них материалов, так и с точки зрения публикации собственных статей. В перспективе разработанный алгоритм можно адаптировать для поиска похожих по тематике конференций, сборников публикаций и научных проектов. Наличие такого инструмента увеличит публикационную активность молодых сотрудников, повысит цитируемость статей и цитируемость между журналами. Результаты работы алгоритма определения тематической близости между журналами, сборниками, конференциями и научными проектами также могут использоваться для построения правил в моделях разграничения доступа к данным на основе онтологий предметной области.
Ключевые слова: тематическая классификация, библиографические данные, граф соавторства, информационные системы.

Цифровая инфраструктура электронного научного журнала: автоматизация редакционно-издательских процессов и система сервисов

Миляуша Салахутдиновна Галявиева, Александр Михайлович Елизаров, Евгений Константинович Липачёв
408-465
Аннотация:

Описаны современные модели и средства публикации и распространения научных знаний. Охарактеризованы современные информационные системы управления научными изданиями и сервисы, определяющие их функциональность.

Введено понятие цифровой инфраструктуры электронного научного журнала как комплекса, который объединяет программную платформу, реализующую основные рабочие процессы управления электронным журналом, и информационные системы, которые обеспечивают функционирование как основных, так и дополнительных сервисов, учитывающих, в частности, специфику предметной области журнала.

Представлен подход к организации цифровой инфраструктуры электронного научного журнала на основе открытой программной системы Open Journal Systems (OJS). Предложены сервисы, расширяющие функциональные возможности этой системы и учитывающие специфику предметной области научных журналов. На основе технологии расширения функционала OJS созданы программные модули, обеспечивающие автоматизацию ряда редакционных процессов электронного научного журнала.

Представлена система сервисов автоматической обработки коллекций научных документов. Эти сервисы обеспечивают проверку соответствия документов коллекций принятым правилам формирования коллекций и преобразования документов в установленные форматы; структурный анализ документов и извлечение метаданных, а также их интеграцию в научное информационное пространство. Система сервисов позволяет автоматически выполнять набор операций, который не реализуем за практически приемлемое время при традиционной «ручной» обработке электронного контента, и предназначена для обработки больших коллекций научных документов.

Охарактеризованы алгоритмы автоматической стилевой валидации текстов на этапе регистрации статьи в информационной системе электронного научного журнала, автоматического подбора рецензентов, рассылки уведомлений и контроля сроков рецензирования.

Представлены методы обработки документов, содержащих математические формулы, в частности, алгоритм поиска по формулам в коллекциях математических документов. Указаны основные идеи, подходы и уже полученные результаты по разработке семантических технологий управления математическими знаниями, в том числе, подход к построению рекомендательных систем на основе онтологий математического знания и метод автоматизации процесса первичной обработки научной статьи, использующей TеX-нотацию.

Охарактеризована проблема построения системы анализа и оценки информационного и социального воздействия публикуемого научного контента на его пользователей. Проведено сопоставление традиционных (библиометрических и наукометрических) и альтернативных показателей такой оценки. Описан мировой опыт использования информетрических сервисов на сайтах научных журналов. Обсуждены варианты реализации этих подходов в рамках цифровой инфраструктуры электронного научного журнала.

Ключевые слова: издательские системы, современные модели публикации и распространения научных знаний, информационное общество, электронный научный журнал, информационные системы управления научными изданиями и публикациями, интеграция электронных ресурсов.

Использование методов тематического анализа в наукометрических системах

Александр Сергеевич Козицын, Сергей Александрович Афонин, Дмитрий Алексеевич Шачнев
315-338
Аннотация:

Во многих современных наукометрических системах и системах цитирования представлены различные механизмы тематического поиска и тематической фильтрации информации. В большинстве случаев для тематического анализа статей и журналов используется полнотекстовый подход, который имеет ряд ограничений. Использование алгоритмов, основанных на анализе графов как автономно, так и совместно с полнотекстовыми алгоритмами, позволяет устранить эти ограничения и улучшить полноту и точность тематического поиска. Алгоритм, разработанный авторами и представленный в этой работе, использует для анализа тематической близости журналов граф соавторства. Алгоритм нечувствителен к языку журнала и подбирает похожие журналы на разных языках, что сложно реализуемо для алгоритмов, основанных на анализе полнотекстовой информации. Апробация алгоритма проводилась в наукометрической системе ИАС ИСТИНА. В интерфейсе, разработанном для этих целей, пользователь может выбрать один близкий ему по тематике журнал, и система автоматически сформирует подборку журналов, которые могут представлять интерес для пользователя как с точки зрения изучения имеющихся в них материалов, так и с точки зрения публикации собственных статей. В перспективе разработанный алгоритм можно адаптировать для поиска похожих по тематике конференций, сборников публикаций и научных проектов. Наличие такого инструмента увеличит публикационную активность молодых сотрудников, повысит цитируемость статей и цитируемость между журналами. Результаты работы алгоритма определения тематической близости между журналами, сборниками, конференциями и научными проектами также могут использоваться для построения правил в моделях разграничения доступа к данным на основе онтологий предметной области.

Ключевые слова: тематическая классификация, библиографические данные, граф соавторства, информационные системы.

Наукометрические измерения в электронных библиотеках на основе рубрикаторов научной информации

М.Р. Когаловский, С.И. Паринов
Аннотация: Ряд научных систем электронных библиотек располагает средствами статистических измерений востребованности (количества просмотров и загрузок) содержащихся в них информационных объектов. Результаты этих измерений могут агрегироваться по их авторам и организациям, в которых созданы эти информационные объекты. Вместе с тем, большой интерес представляет также тематически структурированная статистика востребованности. Для идентификации тематики информационных объектов могут использоваться широко признанные научные классификационные системы или рубрикаторы научной информации. В данной статье рассматриваются функции сервиса системы Соционет, обеспечивающего указанные тематически структурированные статистические измерения.
Ключевые слова: электронная библиотека, наукометрия, рубрикатор научной информации, система Соционет, наукометрический сервис, тематический запрос, ГРНТИ, JEL.

Алгоритм определения переводов статей с использованием статистических данных

Александр Сергеевич Козицын, Сергей Александрович Афонин, Андрей Александрович Зензинов
494-505
Аннотация: В настоящее время происходит активное внедрение наукометрических систем для автоматизации процесса анализа эффективности деятельности научных организаций с целью применения различных методов стимулирования научной деятельности. Одними из наиболее важных индикаторов являются количество публикаций и их цитируемость. Для оценки этих показателей необходимы средства автоматизированного построения связей между оригинальными статьями и их переводами. В настоящей работе проанализированы существующие методы оценки близости оригинального текста и его возможного перевода, показана их недостаточная эффективность для построения связей между статьями и описаня разработанный авторами метод автоматического поиска переводов статей в больших коллекциях библиографических данных. Особенностью разработанного алгоритма является использование статистических данных о публикации статей в различных журналах и информации о соавторах анализируемых статей. Представленный в настоящей работе алгоритм позволяет осуществлять поиск переводов статей без предварительной настройки на заданные пары языков оригинала и перевода статьи, а также не требует использования больших коллекций обучающих выборок. Апробация программной реализации алгоритма проводилась в наукометрической системе Московского государственного университета (МГУ) им. М.В. Ломоносова. Результаты тестирования показали ее достаточную эффективность и возможность использования разработанного алгоритма для автоматического построения рекомендаций пользователям для отметки в системе переводных версий статей.
Ключевые слова: библиографические данные, анализ графов, перевод, статья, статистика, наукометрия, цитирование, автоматизированные системы.

Метод поиска экспертов по данным наукометрических систем

Александр Сергеевич Козицын, Сергей Александрович Афонин
870-888
Аннотация:

Применение современных методов тематического анализа для аналитической обработки больших объемов информации используется в настоящие время практически во всех сферах человеческой деятельности, в том числе, в наукометрии. Многие наукометрические системы и системы цитирования, включая всемирно известные WoS, Scopus, Google Shcolar, разрабатывают тематические рубрикаторы для поиска и обработки информации. Важными практическими задачами, которые могут решаться с применением методов тематической классификации, являются: оценка динамики развития тематических направлений в организации, отдельной стране и мировой науке в целом; поиск статей по заданной тематике; поиск и оценка авторитетности экспертов; поиск журналов для публикации и другие актуальные задачи. Авторами созданы программные реализации алгоритмов для решения некоторых из перечисленных задач и ведутся научные исследования с целью создания новых эффективных математических моделей и алгоритмов в этой области.

Ключевые слова: тематический поиск, библиографические данные, поиск экспертов, информационные системы, наукометрия.
1 - 6 из 6 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества