Аннотация:
Рассмотрена проблема построения интерпретируемых векторных представлений научных текстов для задач интеллектуальной академической генеалогии. Предложена типология эмбеддингов, включающая три класса: статистические, выученные нейросетевые и структурированные символьные. Обоснована необходимость объединения достоинств нейросетевых (высокая семантическая точность) и символьных (интерпретируемость измерений) подходов. Для реализации такого гибридного подхода предложен алгоритм построения выученных символьных эмбеддингов путем регрессионного преобразования вектора внутреннего представления нейросетевой модели в интерпретируемый набор оценок.
Экспериментальная оценка алгоритма проведена на корпусе фрагментов авторефератов диссертаций по педагогическим наукам. Компактный трансформерный энкодер с регрессионной головой обучался воспроизводить тематические оценки, сгенерированные передовой генеративной языковой моделью. Сравнение шести режимов обучения (три типа регрессионной головы и два состояния энкодера) показало, что дообучение верхних слоев энкодера является ключевым фактором повышения качества. По результатам тестирования была выбрана наилучшая конфигурация, которая достигла коэффициента детерминации R² = 0.57 и точности определения трех наиболее релевантных концептов, равной 74%. Результаты подтверждают, что для определенного рода задач, в которых требуется формальное представление выходных данных, возможна аппроксимация поведения генеративной модели компактным энкодером с регрессионной головой при существенно меньших вычислительных затратах. В более широкой перспективе разработка алгоритмов построения выученных символьных эмбеддингов будет способствовать созданию такой модели формальной репрезентации научного знания, в которой конвергенция нейросетевых и символьных методов обеспечит как масштабируемость обработки научных текстов, так и интерпретируемость векторных представлений, кодирующих содержание.