• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Нейросимволический подход к дополненной генерации текста на основе автоматизированной индукции морфотактических правил

Марат Вильданович Исангулов, Александр Михайлович Елизаров, Айгиз Ражапович Кунафин, Айрат Рафизович Гатиатуллин, Николай Аркадиевич Прокопьев
1085-1102
Аннотация:

Представлен гибридный нейросимволический метод, который объединяет большую языковую модель (LLM) и конечный автомат (FST) для обеспечения морфологической корректности при генерации текста на агглютинативных языках.
Система автоматически извлекает правила из корпусных данных: для локальных примеров словоформ LLM формирует цепочки морфологического разбора, которые затем агрегируются и упорядочиваются в компактные описания правил морфотактики (LEXC) и выбора алломорфов (regex). На этапе генерации LLM и FST работают совместно: если токен не распознается автоматом, LLM извлекает из контекста пару «лемма + теги», а FST реализует корректную поверхностную форму. В качестве набора данных использован корпус художественной литературы (~1600 предложений). Для списка из 50 существительных извлечено 250 словоформ. По предложенному алгоритму LLM сгенерировала 110 контекстных regex-правил вместе с LEXC-морфотактикой, на основе чего был скомпилирован FST, распознавший 170/250 форм (~70%). В прикладном тесте машинного перевода на подкорпусе из 300 предложений интеграция данного FST в цикл LLM повысила качество с BLEU 16.14 / ChrF 45.13 до BLEU 25.71 / ChrF 50.87 без дообучения переводчика. Подход применим к иным частям речи и другим агглютинативным и малоресурсным языкам, где он может быть использован для наполнения словарных и грамматических ресурсов.

Ключевые слова: нейросимволический подход, большая языковая модель, конечные автоматы, двухуровневая морфология, LEXC морфотактика, машинный перевод, агглютинативные языки, башкирский язык.

Детекция галлюцинаций на основе внутренних состояний больших языковых моделей

Тимур Рустемович Айсин, Татьяна Вячеславовна Шамардина
1282-1305
Аннотация:

В последние годы большие языковые модели (Large Language Models, LLM) достигли значительных успехов в области обработки естественного языка и стали ключевым инструментом для решения широкого спектра прикладных и исследовательских задач. Однако с ростом их масштабов и возможностей все более острой становится проблема галлюцинаций – генерации ложной, недостоверной или несуществующей информации, представленной в достоверной форме. В связи с этим вопросы анализа природы галлюцинаций и разработки методов их выявления приобретают особую научную и практическую значимость.


В работе изучен феномен галлюцинаций в больших языковых моделях, рассмотрены их существующая классификация и возможные причины. На базе модели Flan-T5 также исследованы различия внутренних состоянии модели при генерации галлюцинаций и верных ответов. На основе этих расхождений представлены два способа детектирования галлюцинаций: с помощью карт внимания и скрытых состояний модели. Эти методы протестированы на данных из бенчмарков HaluEval и Shroom 2024 в задачах суммаризации, ответов на вопросы, перефразирования, машинного перевода и генерации определений. Кроме того, исследована переносимость обученных детекторов между различными типами галлюцинаций, что позволило оценить универсальность предложенных методов для различных типов задач.

Ключевые слова: большие языковые модели, галлюцинации, детекция, Flan-T5, обработка естественного языка, карты внимания, внутренние состояния, HaluEval, Shroom.

Рефал-сервер

Александр Альфредович Гусев
697-707
Аннотация: Работа посвящена описанию проекта обновления и распространения языка программирования Рефал (далее – просто Рефал), созданного в СССР в 1960-х годах В.Ф. Турчиным. Язык изначально предназначался для различных логических преобразований, прежде всего, текстового материала и ориентирован на использование непрограммистами. На практике сфера применения оказалась шире: машинный перевод, оптимизация и компиляция программ, доказательство теорем, моделирование сложных электронных схем, решение ряда задач искусственного интеллекта. Язык сейчас имеет достаточное количество последователей, главным образом, в научных кругах.Задачей описываемого проекта является создание продукта, позволяющего использовать Рефал в современных массовых приложениях и расширить круг его потенциальных пользователей до всего интернета. Был проведён опрос сообщества пользователей и разработчиков Рефала с целью получения представления о текущем состоянии дел, актуальных реализациях и путях развития языка. Были рассмотрены возможные средства реализации проекта. Информации о ведущихся аналогичных разработках получено не было.
Ключевые слова: Рефал, сервер, обработка текстов, xml, json, искусственный интеллект, метавычисления.
1 - 3 из 3 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2026 Казанский (Приволжский) федеральный университет; Институт развития информационного общества