• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Исследование библиографических ссылок в Math-Net.ru с использованием графа цитирования журналов

Андрей Анатольевич Печников, Дмитрий Евгеньевич Чебуков
923-943
Аннотация:

По данным портала Math-Net.Ru построен граф цитирования журналов, дугами в котором являются цитирования с 2002 по 2021 годы. Для повышения достоверности модели был выбран временной интервал цитирования с 2010 по 2021 годы, когда распределение цитирующих статей стабилизировалось на уровне 3500–4500 цитирований за год. Исследована структура старения ссылок и показано, что время их полужизни равно 8 годам. Поэтому дата издания цитируемых статей была ограничена 2002 годом. Для построенного графа цитирования получены основные свойства, такие как маленький диаметр и высокая плотность, свидетельствующие о высоком уровне научных коммуникаций в Math-Net.Ru. Показано отсутствие «эффекта Матфея» как ярко выраженного преимущества в цитировании состоявшихся журналов по отношению к менее известным. Адекватность графа цитирования журналов Math-Net.Ru как модели научных коммуникаций подтверждается сравнением ранжирования журналов в графе цитирования с их рейтингом SCIENCE INDEX в eLIBRARY.RU. Показана прямая умеренная связь между двумя ранжированиями. Сделан ряд содержательных выводов, следующих из анализа графа цитирования.

Ключевые слова: библиографическая ссылка, граф цитирования журналов, старение библиографических ссылок, индекс Матфея, математический портал Math-Net.Ru.

Использование методов тематического анализа в наукометрических системах

Александр Сергеевич Козицын, Сергей Александрович Афонин, Дмитрий Алексеевич Шачнев
315-338
Аннотация:

Во многих современных наукометрических системах и системах цитирования представлены различные механизмы тематического поиска и тематической фильтрации информации. В большинстве случаев для тематического анализа статей и журналов используется полнотекстовый подход, который имеет ряд ограничений. Использование алгоритмов, основанных на анализе графов как автономно, так и совместно с полнотекстовыми алгоритмами, позволяет устранить эти ограничения и улучшить полноту и точность тематического поиска. Алгоритм, разработанный авторами и представленный в этой работе, использует для анализа тематической близости журналов граф соавторства. Алгоритм нечувствителен к языку журнала и подбирает похожие журналы на разных языках, что сложно реализуемо для алгоритмов, основанных на анализе полнотекстовой информации. Апробация алгоритма проводилась в наукометрической системе ИАС ИСТИНА. В интерфейсе, разработанном для этих целей, пользователь может выбрать один близкий ему по тематике журнал, и система автоматически сформирует подборку журналов, которые могут представлять интерес для пользователя как с точки зрения изучения имеющихся в них материалов, так и с точки зрения публикации собственных статей. В перспективе разработанный алгоритм можно адаптировать для поиска похожих по тематике конференций, сборников публикаций и научных проектов. Наличие такого инструмента увеличит публикационную активность молодых сотрудников, повысит цитируемость статей и цитируемость между журналами. Результаты работы алгоритма определения тематической близости между журналами, сборниками, конференциями и научными проектами также могут использоваться для построения правил в моделях разграничения доступа к данным на основе онтологий предметной области.

Ключевые слова: тематическая классификация, библиографические данные, граф соавторства, информационные системы.

Анализ Russian Science Citation Index c bспользованием данных Math-Net.ru

Знаменская Екатерина Александровна, Печников Андрей Анатольевич, Чебуков Дмитрий Евгеньевич
778-795
Аннотация:

С весны 2022 в России ведется создание национальной системы оценки результативности научных исследований и разработок с использованием базы ведущих российских журналов Russian Science Citation Index (RSCI). В статье изложены некоторые результаты анализа нормированного рейтинга RSCI, опубликованного в декабре 2022 года. С применением графа цитирования журналов, построенного по данным Math-Net.Ru на примере тематической группы OECD 101. Mathematics показано, что при наличии большого количества самоцитирований журналов обнаруживается связь между нормированным рейтингом и количеством ссылок, а связь с учетом самоцитирования несколько сильнее, чем без самоцитирования. Анализ распределения журналов по тематическим группам показывает, что использование в качестве критерия единственного признака, такого как OECD, не позволяет сформировать группу как сообщество журналов, имеющее единственную компоненту сильной связности в графе цитирования. Делается вывод о том, что методы исследования графов цитирования журналов являются хорошей основой для сравнительного анализа характеристик журналов и их ранжирования, а значит, могут быть использованы как инструменты для дальнейшего развития и совершенствования рейтингов журналов.

Ключевые слова: рейтинг журналов, Russian Science Citation Index, Math-Net.Ru, граф цитирования журналов, импакт-фактор, степень влиятельности.

Эволюция методов визуализации коллекций научных публикаций

Зинаида Владимировна Апанович
2-42
Аннотация: Методы визуализации информации давно зарекомендовали себя как инструмент, позволяющий понимать данные большого объема. Визуализация коллекций научных публикаций является частным случаем визуализации информации. В статье рассмотрены задачи, решаемые при помощи визуализации, модели и методы анализа текстовой информации, а также новые подходы к визуализации документов. Особое внимание уделено тому, каким образом методы визуализации связаны с методами анализа коллекций научных публикаций.
Ключевые слова: визуализация коллекций документов, анализ текстов, алгоритмы визуализации текстов и метаданных, LDA, NMF, word2vec.

Cистема поддержки принятия решений при выборе источников информации в сетях цитирования

Инна Геннадьевна Ольгина
76-96
Аннотация:

С появлением науки о сетях стало возможным исследовать сложные сетевые системы, в том числе социальные и информационные, посредством представления их в виде графовых моделей. Рост в геометрической прогрессии общего объема научных публикаций обуславливает актуальность задач анализа их взаимосвязей. В науке о сетях для решения данных задач разрабатываются модели и методы, относящиеся к сфере так называемых сетей цитирования. Однако сетевые метрики не используются при анализе публикаций в базах цитирования.


В работе рассмотрены вопросы создания системы поддержки принятия решений при выборе источников информации на основе данных о цитировании научных публикаций. Разработан программный комплекс для принятия решений по определению важности публикации в определенной тематической области. В основу работы этого программного комплекса заложен метод ранжирования публикаций по важности на основе анализа сетей цитирования, позволяющий выявить публикации, которые явно не выделяются в чистом виде при ранжировании на основе известных библиометрических показателей или известных мер центральности узлов. Проведены исследование и сравнительный анализ программного обеспечения для визуализации и исследования всех видов графов и социальных сетей. Выполнены исследования, подтверждающие эффективность предлагаемой системы поддержки принятия решений при выборе источников информации.

Ключевые слова: сеть цитирования, публикация, наукометрия, система поддержки принятия решений, архитектура программного комплекса, сетевой анализ, граф.

Использование графа соавторства для тематического поиска конференций по наукометрическим данным

Александр Сергеевич Козицын, Сергей Александрович Афонин, Дмитрий Алексеевич Шачнев
600-615
Аннотация:

Применение современных методов тематического анализа для аналитической обработки больших объемов информации используется в настоящие время практически во всех сферах человеческой деятельности, в том числе, в наукометрии. Многие наукометрические системы и системы цитирования, включая всемирно известные WoS, Scopus, Google Shcolar, разрабатывают тематические рубрикаторы для поиска и обработки информации. Важными практическими задачами, которые могут решаться с применением методов тематической классификации, являются: оценка динамики развития тематических направлений в организации, в отдельной стране и мировой науке в целом; поиск статей по заданной тематике; поиск и оценка авторитетности экспертов; поиск журналов для публикации и другие актуальные задачи. Авторами созданы программные реализации алгоритмов для решения некоторых из перечисленных задач и ведутся научные исследования с целью создания новых эффективных математических моделей и алгоритмов в этой области.

Ключевые слова: тематический поиск, библиографические данные, поиск конференций, граф соавторства, информационные системы, наукометрия.
1 - 6 из 6 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества