• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Методология и технология создания многоцелевой информационной среды T-System на базе электронной библиотеки с гибким полнотекстовым поиском

С.Х. Ляпин, А.В. Куковякин
Аннотация: Описана методология и технология построения многоцелевой информационной среды T-System путем расширения информационной системы T-Libra и предназначенной для интеграции ресурсов и сервисов, характерных для электронной библиотеки с гибким полнотекстовым поиском, виртуального музея, электронного архива, исследовательской лаборатории, образовательного сервера. Методологической основой интеграции является гибридная двухуровневая онтология, основанная на взаимодействии функциональных систем (верхний уровень), библиотеки концептов и библиотеки тезаурусов (нижний уровень). Технологической основой – унифицированная поисковая система, включающая в себя механизм нелинейных каскадных запросов, формирующих соответствующие функциональные системы и соединяющих результаты полнотекстового поиска, релевантные тезаурусы и концепты, текстовые метаданные, а также нетекстовые объекты различной модальности (графика, звук, видео и т.д.). Вся среда проектируется в трехзвенной архитектуре (Веб-браузер / Веб-сервер + Сервер приложений / Cервер баз данных), с использованием специальной системы индексации для повышения эффективности поиска, а также внешней логики, встроенной в сервер приложений и обеспечивающей совместимость с различными СУБД.

Определение тематической близости научных журналов и конференций с использованием анализа графа соавторства

Александр Сергеевич Козицын, Сергей Александрович Афонин, Дмитрий Алексеевич Шачнев
514-525
Аннотация: Количество публикуемых в мире журналов очень велико. В этой связи, необходим программный инструментарий, который позволит анализировать тематические связи журналов. Разработанный авторами и представленный в этой работе алгоритм использует для анализа тематической близости журналов граф соавторства. Алгоритм нечувствителен к языку журнала и подбирает похожие журналы на разных языках, что сложно реализуемо для алгоритмов, основанных на анализе полнотекстовой информации. Апробация алгоритма проводилась в наукометрической системе ИАС ИСТИНА. В разработанном для этих целей интерфейсе пользователь может выбрать один близкий ему по тематике журнал, и система автоматически сформирует подборку журналов, которые могут представлять интерес для пользователя как с точки зрения изучения имеющихся в них материалов, так и с точки зрения публикации собственных статей. В перспективе разработанный алгоритм можно адаптировать для поиска похожих по тематике конференций, сборников публикаций и научных проектов. Наличие такого инструмента увеличит публикационную активность молодых сотрудников, повысит цитируемость статей и цитируемость между журналами. Результаты работы алгоритма определения тематической близости между журналами, сборниками, конференциями и научными проектами также могут использоваться для построения правил в моделях разграничения доступа к данным на основе онтологий предметной области.
Ключевые слова: тематическая классификация, библиографические данные, граф соавторства, информационные системы.

Интеллектуальный поиск сложных объектов в массивах больших данных

Александр Михайлович Гусенков
40-76
Аннотация: Предложен подход к интеллектуальному поиску сложных объектов в различных типах структурно размеченных текстов, который может быть применен для обработки Больших данных (Big Data). Исследуются два вида представления информационных объектов: реляционные базы данных (РБД), которые структурно размечены своими схемами, и полнотекстовые естественнонаучные документы, содержащие математические выражения (формулы). Для таких полнотекстовых документов предлагается дополнительная автоматизированная разметка для организации поиска формул. В обоих случаях источником информации для построения онтологии и, в дальнейшем, организации поиска являются тексты на естественном языке, которые относятся к слабоструктурированным данным. Для РБД это комментарии к наименованиям таблиц и их атрибутов, а для естественнонаучных документов (статей, монографий и т. д.) – текстовое содержимое размеченных документов.
Ключевые слова: большие данные, семантический поиск, слабоструктурированные данные, онтологии, реляционные базы данных, естественнонаучные тексты, разметка математических выражений.

Использование методов тематического анализа в наукометрических системах

Александр Сергеевич Козицын, Сергей Александрович Афонин, Дмитрий Алексеевич Шачнев
315-338
Аннотация:

Во многих современных наукометрических системах и системах цитирования представлены различные механизмы тематического поиска и тематической фильтрации информации. В большинстве случаев для тематического анализа статей и журналов используется полнотекстовый подход, который имеет ряд ограничений. Использование алгоритмов, основанных на анализе графов как автономно, так и совместно с полнотекстовыми алгоритмами, позволяет устранить эти ограничения и улучшить полноту и точность тематического поиска. Алгоритм, разработанный авторами и представленный в этой работе, использует для анализа тематической близости журналов граф соавторства. Алгоритм нечувствителен к языку журнала и подбирает похожие журналы на разных языках, что сложно реализуемо для алгоритмов, основанных на анализе полнотекстовой информации. Апробация алгоритма проводилась в наукометрической системе ИАС ИСТИНА. В интерфейсе, разработанном для этих целей, пользователь может выбрать один близкий ему по тематике журнал, и система автоматически сформирует подборку журналов, которые могут представлять интерес для пользователя как с точки зрения изучения имеющихся в них материалов, так и с точки зрения публикации собственных статей. В перспективе разработанный алгоритм можно адаптировать для поиска похожих по тематике конференций, сборников публикаций и научных проектов. Наличие такого инструмента увеличит публикационную активность молодых сотрудников, повысит цитируемость статей и цитируемость между журналами. Результаты работы алгоритма определения тематической близости между журналами, сборниками, конференциями и научными проектами также могут использоваться для построения правил в моделях разграничения доступа к данным на основе онтологий предметной области.

Ключевые слова: тематическая классификация, библиографические данные, граф соавторства, информационные системы.
1 - 4 из 4 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества