• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Извлечение данных из сканированных документов со сходной структурой

Рустем Дамирович Саитгареев, Булат Рифатович Гиниятуллин, Владислав Юрьевич Топоров, Артур Александрович Атнагулов, Фарид Радикович Аглямов
667-688
Аннотация:

На текущий момент времени значительная часть передаваемых и хранимых данных не структурирована. Количество неструктурированных данных растет большими темпами каждый год, несмотря на то, что по таким данным трудно производить поиск, к ним нельзя совершать запросы и в целом их обработка не автоматизирована. В то же время наблюдается развитие систем электронного документооборота.


Настоящая работа предлагает инструмент для извлечения данных из фотографий бумажных документов, принимая во внимание их структуру и разметку. Представлены результаты разных испытанных подходов, включая нейронные сети и алгоритмический метод, а также проведен анализ полученных результатов.

Ключевые слова: нейронные сети, машинное обучение, извлечение структуры, извлечение структуры документов, OCR , неструктурированные данные , распознавание текста.

Учёт структуры документа в методе автоматического аннотирования математических понятий в образовательных текстах

Константин Сергеевич Николаев
558-577
Аннотация:

Обогащение образовательных текстов семантическим содержимым (в частности, дополнение документа гиперссылками на страницы сервиса, отображающего подробную информацию о понятиях, используемых в тексте) способствует повышению эффективности усвоения материала обучающимися. Существующие методы семантической разметки образовательных текстов не учитывают структурные особенности таких документов, что приводит к избыточному распознаванию понятий.


В статье описано развитие метода автоматического аннотирования математических понятий в образовательных математических текстах путем добавления функционала для учета структуры образовательного документа. Основное назначение метода заключается в обработке образовательных материалов курса дистанционного образования «Технология решения планиметрических задач». Соблюдение единого шаблона при создании страниц курса позволяет применить анализ веб-разметки страниц и ключевых слов, примененных создателями курса. Основной задачей в данном процессе является определение типа ячеек таблицы, в которых находятся текстовые фрагменты образовательных материалов. В соответствии с рекомендациями создателей курса, определения необходимо выделять в ячейках, содержащих постановку задачи, а также в тех блоках, где указаны входные данные задачи. Определение типа ячеек таблиц производится с помощью анализа их атрибутов и поиска ключевых слов в их содержимом. Такое ограничение распознаваемых фрагментов текста позволяет улучшить восприятие страниц курса учеником и повысить качество усвоения учебного материала.

Ключевые слова: семантический анализ, математическая онтология, дидактические отношения, математическое образование, разметка документа.

Алгоритмический фреймворк для извлечения информационного ядра веб-страницы

Хамза Салем, Александр Сергеевич Тощев
931-942
Аннотация:

Представлен новый точный алгоритм MCE извлечения основного содержимого с новостных веб-сайтов. Предложенный алгоритм использует анализ структуры объектной модели документа (DOM) и метрики плотности контента
для идентификации и извлечения информационного ядра веб-страницы. Реализованный подход объединяет три ключевые особенности: максимальное количество прямых дочерних элементов с текстом, максимальное текстовое содержимое без дочерних элементов, содержащих текст, и ближайшее расположение
к средней глубине узла. Алгоритм продемонстрировал лучшую производительность по сравнению с существующими решениями, такими как Boilerpipe и Readability, достигая 99,96% точности, 99,69% полноты и 99,80% F1-меры на использованном комплексном наборе данных из 500 разнообразных веб-страниц. Языково-независимый дизайн делает алгоритм особенно эффективным для извлечения мультиязычного контента, включая языки со сложной структурой, такие, например, как арабский.

Ключевые слова: NLP, извлечение данных, языково-независимый алгоритм, RAG (Retrieval-Augmented Generation).

Онтологическое представление внутреннего документа по основной деятельности образовательного учреждения

Виктория Владимировна Чуйкова, Максим Олегович Таныгин
454-465
Аннотация:

Проанализирована структура служебных записок кафедры высшего учебного заведения с целью упрощения ретроспективного поиска среди массива документации и выделения групп однотипных документов. Установленные правила классификации служебных записок на основе формальных признаков позволят значительно упростить процесс поиска и работы с ними, а также создания новых типовых документов.

Ключевые слова: онтология документа, структура документа, онтологическая модель, анализ структуры документов.
1 - 4 из 4 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2026 Казанский (Приволжский) федеральный университет; Институт развития информационного общества