• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Особенности создания электронного ресурса "материалы к синтаксическому словарю"

А.А. Котов, Г.Б. Гурин, А.В. Седов, М.Ю. Некрасов, Ю.В. Сидоров, А.А. Рогов
Аннотация: В статье описывается размеченный корпус текстов публицистики XIX века в оригинальной графике (http://smalt.karelia.ru/corpus/index.phtml), обосновывается выбор теории и параметров разметки, обсуждаются некоторые сложности аннотирования. Основу корпуса составляют тексты В. И. Даля, Ф. М. Достоевского и близких ему публицистов.
Ключевые слова: морфология, дореволюционная графика, публицистика XIX века, тексты В.И. Даля и Ф.М. Достоевского, параметры разметки, аннотирование, грамматические параметры, морфоанализатор.

Применение машинного обучения к задаче генерации поисковых запросов

Александр Михайлович Гусенков, Алина Рафисовна Ситтикова
272-293
Аннотация:

Исследованы две модификации рекуррентных нейронных сетей: сети с долгой краткосрочной памятью и сети с управляемым рекуррентным блоком с добавлением механизма внимания к обеим сетям, а также модель Transformer в задаче генерации запросов к поисковым системам. В качестве модели Transformer использована модель GPT-2 от OpenAI, которая обучалась на запросах пользователей. Проведен латентно-семантический анализ для определения семантических сходств между корпусом пользовательских запросов и запросов, генерируемых нейронными сетями. Для проведения анализа корпус был переведен в формат bag of words, к нему применена модель TFIDF, проведено сингулярное разложение. Семантическое сходство вычислялось на основе косинусной меры. Также для более полной оценки применимости моделей к задаче был проведен экспертный анализ для оценки связности слов в искусственно созданных запросах.

Ключевые слова: обработка естественного языка, генерация естественного языка, машинное обучение, нейронные сети.

Анализ моделей векторных представлений слов в задаче разметки семантических ролей в русскоязычных текстах

Лейсан Маратовна Кадермятова, Елена Викторовна Тутубалина
1026-1043
Аннотация: Изучено влияние использования векторных представлений слов на качество установления семантических ролей в русскоязычных текстах. Задача установления семантических ролей в русскоязычных текстах получила широкое распространение после выхода на свет корпуса FrameBank. Были исследованы модели векторных представлений слов word2vec, fastText и ELMo (Embeddings from Language Models). Анализировались метрики качества микро- и макро-F1 как оценочные показатели результатов автоматической разметки актантов. Был проведен ряд экспериментов, демонстрирующих, что модели ELMo, основанные на токенах предикатно-аргументных конструкций, показывают больший прирост качества по сравнению со всеми остальными моделями, в том числе, в сопоставлении с моделями ELMo, обученными на леммах, как по величине микро-F1, так и по величине макро-F1.
Ключевые слова: машинное обучение, обработка естественного языка, векторные представления слов, семантические роли.

Информационный анализ делового текста. Стратегии анализа и компоненты анализатора

В.Ш. Рубашкин
Аннотация: Статья посвящена обсуждению общей архитектуры систем информационного анализа делового текста. Обсуждаются три комплекса проблем, решения по которым радикально меняют архитектуру анализатора: определение целевой технологии и с учетом этого выбор целевого языка представления знаний; выбор способа межуровневого взаимодействия компонентов анализатора; определение соотношения структурных (rule-based) и прецедентно-статистических (example-based, case-based, corpus-based) моделей в используемых алгоритмах и процедурах анализа.
Ключевые слова: информационный анализ делового текста, компоненты анализатора, архитектура анализатора, целевая технология, целевой язык, фактографическая информация.

Подход к созданию корпуса текстов видеоигр на основе универсальной структуры

Никита Рамильевич Нурлыгаянов, Влада Владимировна Кугуракова
578-597
Аннотация:

Рассмотрена проблема высокой и увеличивающейся стоимости разработки видеоигр, для её решения предложено применить процедурную генерацию контента, что позволит снизить затраты на разработку.


Работа является частью масштабного исследования по автоматическому созданию прототипов видеоигр и посвящена обработке игровых сценариев, то есть текстов на естественном языке. Предложено выделять из сценариев необходимые сущности и передавать их дальнейшим шагам алгоритма, который по текстовым описаниям будет генерировать игровые ресурсы.


Существует несколько публикацией, посвящённых обработке игровых текстов, в которых предложено несколько различных структур хранения выделенной информации. В настоящей статье предложен универсальный формат, который подойдёт для обработки текста любой видеоигры и позволит создать корпус текстов для использования в дальнейших исследованиях и автоматической генерации игровых прототипов.

Ключевые слова: PCG, NLP, разработка видеоигр.

Модель лингвистического графа знаний «Turklang» как база для создания инструментов обучения тюркским языкам

Айрат Рафизович Гатиатуллин, Николай Аркадиевич Прокопьев
251-265
Аннотация:

Описаны элементы модели лингвистического графа знаний «Turklang», разработанного в Институте прикладной семиотики АН РТ и используемого в качестве базы для создания ряда лингвистических ресурсов и инструментов: портал «Тюркская морфема», электронный корпус татарского языка «Туган Тел», лингвистические процессоры.


Для создания образовательной среды необходимы предметно-ориентированные графы знаний, для получения которых не применимы методы создания общих и открытых графов. В работе описаны лингвистические графы знаний, которые отображают, с одной стороны, потенциальные возможности тюркских языков, с другой стороны, примеры реального использования в текстах. Особенность этих графов знаний заключается в том, что они содержат лингвистические единицы разных языковых уровней, а также семантические универсалии, соответствующие значениям этих лингвистических единиц, которые встроены в единую модель лингвистического графа знаний. Структура такого графа знаний позволяет формировать учебные курсы, строить индивидуальную образовательную траекторию, а также создавать задания и средства автоматизированной проверки в рамках контроля знаний при обучении тюркским языкам. Это дает возможность разрабатывать впоследствии, на основе этих графов, программы обучения с учетом структурно-функциональных особенностей тюркских языков, а также способствует реализации индивидуальных целей обучающихся.

Ключевые слова: граф знаний, база знаний, лингвистический ресурс, лингвистическая единица, малоресурсные языки, тюркские языки, веб-портал, электронное образование, контроль знаний, автоматизированная оценка ответа.

Cемантические сервисы цифровой экосистемы ontomath для математического образования

Ольга Авенировна Невзорова, Евгений Константинович Липачёв, Константин Сергеевич Николаев
538-569
Аннотация:

Представлен набор семантических сервисов, разработанных с целью поддержки образовательного процесса в области математики. Функционал этих сервисов основан на использовании математических онтологий OntoMathEdu и OntoMathPRO. Онтология профессионального математического знания OntoMathPRO предназначена для классификации и систематизации математических понятий и включает несколько важнейших областей математики. Образовательная математическая онтология OntoMathEdu системно представляет знания по учебному курсу «Планиметрия». Для применения онтологий в образовательных приложениях разработан подход к проектированию пререквизитных отношений в названных онтологиях. Для поддержки математического образования разработаны сервисы семантического поиска по математическим формулам, семантического аннотирования учебных материалов, визуализации подграфов семантической сети онтологии OntoMathEdu, а также параллельный формальный/неформальный корпус математических утверждений и система автоматической генерации тестовых вопросов по математическим дисциплинам.


Приведены примеры успешного применения разработанных программных инструментов. Эти инструменты встроены в цифровую экосистему OntoMath, в рамках которой осуществляется взаимодействие семантических сервисов управления математическим знанием.  

Ключевые слова: Цифровая экосистема, экосистема OntoMath, предметная онтология, математическая онтология OntoMathPRO, образовательная онтология OntoMathEdu, пререквизитное отношение, семантический сервис.
1 - 7 из 7 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества