• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Разработка методики сегментации пользователей с помощью алгоритмов кластеризации и расширенной аналитики

Даниил Андреевич Клинов, Карен Альбертович Григорян
137-147
Аннотация:

Статья посвящена созданию эффективного решения по сегментации пользователей. Представлены анализ существующих сервисов сегментации пользователей и подходов к их сегментации (ABCDx сегментация, демографическая сегментация, сегментация на основании карты пути пользователя), а также анализ алгоритмов кластеризации (K-means, Mini-Batch K-means, DBSCAN, Agglomerative Clustering, Spectral Clustering). Исследование названных подходов нацелено на создание решения по сегментации, «гибкого» и адаптирующегося под каждую пользовательскую выборку. Также применены дисперсионный анализ (тест ANOVA) и разбор метрик кластеризации для оценки качества сегментации пользователей. С помощью указанных методов разработано эффективное решение по сегментации пользователей с использованием технологии расширенной аналитики и машинного обучения.

Ключевые слова: Сегментация, кластеризация, дисперсионный анализ, машинное обучение, расширенная аналитика, тест ANOVA, продуктовая аналитика.

О некоторых свойствах графов сотрудничества учёных в Math-Net.ru

Андрей Анатольевич Печников, Дмитрий Евгеньевич Чебуков
184-196
Аннотация:

Проведено исследование двух графов научного сотрудничества, построенных на основе соавторства и цитирования по данным Общероссийского математического портала Math-Net.Ru. Граф научного сотрудничества на основе цитирования представляет собой ориентированный граф без петель и кратных ребер, вершинами которого являются авторы публикаций, а дуги связывают их, когда имеется хотя бы одна публикация первого автора, цитирующая публикацию второго автора. Граф соавторства – это неориентированный граф, в котором вершинами являются авторы, а ребра фиксируют соавторство двух авторов хотя бы в одной статье. Проводится традиционное исследование основных характеристик обоих графов: диаметр и среднее расстояние, компоненты связности и кластеризация. В обоих графах мы наблюдаем схожую структуру связности – наличие гигантской компоненты и большое количество маленьких компонент. Отмечается сходство и различие научного сотрудничества через соавторство и цитирование.

Ключевые слова: научное сотрудничество, цитирование, соавторство, граф, математический портал Math-Net.Ru.

Формирование академических групп и проектных команд на основе сбора данных об обучающихся

Наталья Александровна Коргутлова, Светлана Юрьевна Басаргина, Михаил Михайлович Абрамский, Марат Альбертович Солнцев, Таисия Сергеевна Бузукина
193-208
Аннотация: Обсуждены вопросы использования данных об обучающихся, представленных в электронном виде, в задачах генерации распределений обучающихся по академическим группам, элективам и проектным командам. Проиллюстрировано применение алгоритмов машинного обучения для этих задач. Показана возможность использования данных, собранных из социальных сетей.
Ключевые слова: личностный портрет студента, кластеризация, распределение по компетенциям, анализ социальных сетей.
1 - 3 из 3 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества