• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Семантический анализ документов в системе управления цифровыми научными коллекциями

Шамиль Махмутович Хайдаров
61-85
Аннотация: Предложены методы семантического анализа документов в системе управления цифровыми научными коллекциями, в том числе электронными научными журналами. Рассмотрены методы обработки документов, содержащих математические формулы, а также способы конвертации этих документов из формата OpenXML в формат TeX. Разработан алгоритм поиска по формулам в коллекциях математических документов, хранящихся в формате OpenXML. Алгоритм реализован в виде онлайн-сервиса на платформе science.tatarstan.
Ключевые слова: семантический анализ, издательские системы.

Субъективные заметки о поисковых системах

Юрий Евгеньевич Поляк
65-97
Аннотация:

Поводом для данной работы послужили случившиеся один за другим 25-летние юбилеи главных для нашей страны поисковых машин Яндекс и Google. Эта статья – попытка описать некоторые события из истории развития средств навигации в интернете с точки зрения их свидетеля (и частично – участника).

Ключевые слова: Яндекс, Google, поисковые системы, история поиска.

Рекомендательная система поиска экспертов для проведения научного рецензирования в математическом журнале

Александр Михайлович Елизаров, Евгений Константинович Липачёв, Шамиль Махмутович Хайдаров
708-732
Аннотация: Предложен подход к организации экспертной оценки научного документа, представленного для публикации в математический журнал. Ограничение предметной области связано с использованием системы математической классификации Mathematical Sciences Classification System – MSC. Представлена рекомендательная система, позволяющая сформировать список возможных экспертов для проведения процедуры научного рецензирования математической статьи. Эта рекомендательная система использует коды MSC2020, изначально представленные автором статьи. Если в статье указаны коды MSC2000 или MSC2010, производится их автоматическое преобразование в коды MSC2020. Для каждого эксперта в системе поддерживается персональный профиль, который содержит набор кодов MSC2020, дополненный числовыми характеристиками, – весами, вычисленными для каждого кода в соответствии с системой учета компетенций, предпочтений или отказов от участия в процедуре рецензирования, сформированных в процессе предыдущей работы в качестве эксперта. Этот набор автоматически редактируется в случае включения эксперта в список возможных рецензентов – повышаются или уменьшаются веса нескольких кодов, а также добавляются новые коды. Рекомендательная система реализована в виде встроенного инструмента (плагина) платформы Open Journal Systems (OJS). Разработанный метод апробирован в информационной системе научного журнала Lobachevskii Journal of Mathematics (https://ljm.kpfu.ru).
Ключевые слова: информационная система научного журнала, Open Journal Systems, рабочий процесс рецензирования, автоматический выбор рецензентов, Mathematics Subject Classification 2010, Lobachevskii Journal of Mathematics.

Где находятся лучшие признаки? Послойный анализ слоев трансформера для эффективной классификации эндоскопических изображений

Ахмад Таха, Рустам А. Лукманов
1207-1229
Аннотация:

В поисках путей развития медицинского искусственного интеллекта показано, что предварительно обученный Vision Transformer с линейным классификатором может достигать высокой и конкурентоспособной производительности в классификации эндоскопических изображений. Представлен систематический послойный анализ, который выявляет источник наиболее важных признаков, оспаривая общепринятую эвристику использования только последнего слоя. Установлен отчетливый феномен «пика перед концом», когда поздне-промежуточный слой предлагает более обобщаемое представление для последующей медицинской задачи. На стандартных наборах данных Kvasir и HyperKvasir предложенный подход с малым количеством параметров не только получить достаточно высокую точность, но и значительно сокращает вычислительные затраты. Полученные работы могут быть рекомендованы в качестве практического руководства по эффективному использованию признаков общих базовых моделей в клинических условиях.

Ключевые слова: классификация эндоскопических изображений, замороженный кодировщик, извлечение признаков, послойный анализ, визуальный трансформер (ViT), перенос обучения, самоконтролируемое обучение (SSL), медицинский искусственный интеллект.
1 - 4 из 4 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2026 Казанский (Приволжский) федеральный университет; Институт развития информационного общества