• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

V Международная Конференция «Информационные технологии для наук о земле и приложения для геологии, горной промышленности и экономики. Ites&Mp-2019»

Вера Викторовна Наумова
1279-1300
Аннотация:

Охарактеризованы материалы, представленные на V международной конференции «Информационные технологии для наук о Земле и приложения для геологии, горной промышленности и экономики. ITES&MP-2019». Названная конференция описывает результаты последних лет в следующих областях:


  • открытый доступ к научным данным в области наук о Земле; особенности данных в науках о Земле: новые концепции и методы, инструменты их сбора, интеграции и обработки в различных информационных системах, в том числе в системах с интенсивным использованием данных;

  • анализ данных и математическое моделирование природных процессов в науках о Земле: новые подходы. Эволюция классических ГИС-приложений;

  • применение информационных технологий в области металлогении критических полезных ископаемых;

  • социальные аспекты горно-геологической отрасли;

  • прогнозные построения в области геологической разведки и землепользования;

  • интеллектуальный анализ данных, извлечение фактов и знаний из научных публикаций. Тезаурусы, онтологии, концептуальное моделирование. Семантический веб, связанные данные. Сервисы. Семантическое структурирование контента. Применение в науках о Земле;

  • применение методов и технологий дистанционного зондирования в науках о Земле и горной промышленности: от спутников до беспилотных летательных аппаратов;

  • информационные технологии для создания систем демонстрации и популяризации достижений в науках о Земле;

  • приложения: прогноз месторождений, экологические риски, опасные природные явления, управление водными ресурсами, геотермальная энергия и др.

Ключевые слова: информационные технологии, науки о Земле.

Семантический анализ документов в системе управления цифровыми научными коллекциями

Шамиль Махмутович Хайдаров
61-85
Аннотация: Предложены методы семантического анализа документов в системе управления цифровыми научными коллекциями, в том числе электронными научными журналами. Рассмотрены методы обработки документов, содержащих математические формулы, а также способы конвертации этих документов из формата OpenXML в формат TeX. Разработан алгоритм поиска по формулам в коллекциях математических документов, хранящихся в формате OpenXML. Алгоритм реализован в виде онлайн-сервиса на платформе science.tatarstan.
Ключевые слова: семантический анализ, издательские системы.

Применение машинного обучения к задаче генерации поисковых запросов

Александр Михайлович Гусенков, Алина Рафисовна Ситтикова
272-293
Аннотация:

Исследованы две модификации рекуррентных нейронных сетей: сети с долгой краткосрочной памятью и сети с управляемым рекуррентным блоком с добавлением механизма внимания к обеим сетям, а также модель Transformer в задаче генерации запросов к поисковым системам. В качестве модели Transformer использована модель GPT-2 от OpenAI, которая обучалась на запросах пользователей. Проведен латентно-семантический анализ для определения семантических сходств между корпусом пользовательских запросов и запросов, генерируемых нейронными сетями. Для проведения анализа корпус был переведен в формат bag of words, к нему применена модель TFIDF, проведено сингулярное разложение. Семантическое сходство вычислялось на основе косинусной меры. Также для более полной оценки применимости моделей к задаче был проведен экспертный анализ для оценки связности слов в искусственно созданных запросах.

Ключевые слова: обработка естественного языка, генерация естественного языка, машинное обучение, нейронные сети.

От сканированных изображений к базе знаний. Модель и стратегия научных исследований

Дэвид Бирман, Дженнифер Трант
Аннотация: В следующем десятилетии печатное наследие мира будет оцифровано. Если национальные правительства будут играть в этом процессе активную роль, то он сможет принести значительные выгоды для развития человечества путем демократизации доступа к различным печатным материалам. Предпосылками успеха являются всеобъемлющие программы оцифровки, которые делают общедоступными изображения страниц, а также позволяют комбинировать алгоритмы оптического распознавания текстов (OCR) с декодированием содержания, заложенного в типографских традициях, представляя слова в контексте их функций в документах – в заглавиях, ссылках, подписях к иллюстрациям и т.д.
Связывание сканированных страниц с библиографическими метаданными и использование оптического распознавания текстов – распространенный метод получения дополнительной информации при сканировании книг. Но для извлечения полезного знания, содержащегося в типографских традициях (печать и представление страницы) требуются дальнейшие исследования, чтобы их можно было использовать при декодировании электронных версий печатных книг. В данной работе исследуются некоторые вопросы кодирования информации, заключенной в печатных традициях, и то, как получающиеся в итоге базы знаний и семантический анализ могут использоваться для получения обогащенного культурного контента. Рекомендуемые национальные стратегии могут превратить электронные версии печатных текстов во взаимосвязанные базы знаний и предоставить для всех доступ к печатному наследию, сохраняя его разнообразие.

Семантический рекомендательный сервис присвоения кода УДК математическим статьям

Ольга Авенировна Невзорова, Дамир Альбертович Альмухаметов
203–224
Аннотация:

Классификация документов с присвоением кодов-классификаторов является традиционным способом систематизации и поиска документов по определенной тематике. Универсальная десятичная классификация (УДК) лежит в основе систематизации знаний, представленных в библиотеках, базах данных и других хранилищах информации. В России УДК является обязательным реквизитом всей книжной продукции и информации по естественным и техническим наукам. Выбор классификационных кодов связан с анализом структуры дерева классификатора и традиционно выполняется автором научной статьи.


В настоящей работе предложено решение задачи автоматизации подбора классификационного кода УДК для математической статьи на основе специального ресурса – онтологии OntoMathPRO профессиональной математики, разработанной в Казанском федеральном университете. Подходом к решению задачи автоматизации является создание «кодовых карт» для каждого классифицирующего кода в дереве УДК в области математики. Под «кодовой картой» понимается взвешенный набор всех математических именованных сущностей, извлеченных с помощью онтологии OntoMathPRO из коллекции статей с заданным кодом УДК. Создание «кодовых карт» основано на гипотезе о том, что выбор кода УДК обуславливается определённым набором классифицирующих признаков, которые можно представить классами из онтологии OntoMathPRO. Предложенная гипотеза проверена и подтверждена: проверка гипотезы проведена на коллекции математических статей, опубликованных в журнале «Известия ВУЗов. Математика» в течение 1999–2009 гг.

Ключевые слова: Универсальная десятичная классификация, кодовая карт, кодовая карта, онтология OntoMathPRO, математическая статья.
1 - 5 из 5 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества