Аннотация:
Проведен анализ развития интеллектуальных систем в кредитных организациях (далее – Банках).
Предложен метод выстраивания сквозного управленческого учета в подразделении кредитной организации, специализирующегося на работе с непрофильными активами. На базе процессного подхода предложен алгоритм внедрения в работу подразделения базы данных для формирования ключевых индикаторов производительности и контроля.
Описаны ключевые этапы работы подразделения, атрибутный состав сущностей (множества), поступающих, обогащаемых и передаваемых на каждом этапе работы подразделения. Методом моделирования процесса выстроены ролевая модель, права доступа и редактирования для сотрудников. Предложены источники данных (справочники) для оптимизации и унификации процесса наполнения базы данных (кортежа). Предложен способ обращения к базе данных в надстройке Power Query Microsoft Excel, которая позволяет собирать данные из файлов всех основных типов данных, обрабатывать и дорабатывать полученные данные. На языке Python на основе данных построены математические и финансовые модели анализа данных (логистическая регрессия, дерево решений и метод дисконтированных денежных потоков) с целью прогнозирования расходов, сроков экспозиции активов и принятия решения об оптимальной стоимости постановки имущества на баланс Банка и цены реализации. На основе библиотек (matpotlib, seaborn, plotly) предложены варианты визуализации данных для менеджмента. На примере подразделения Банка описаны положительные эффекты и возможности, которые открываются перед менеджментом разного уровня в решении повседневных задач и планирования деятельности подразделения. Предложено техническое задание по разработке витрины реализации непрофильных активов на сайте Банка как среды накопления внешних данных для принятия гибких менеджерских решений.