• Main Navigation
  • Main Content
  • Sidebar

Russian Digital Libraries Journal

  • Home
  • About
    • About the Journal
    • Aims and Scopes
    • Themes
    • Editor-in-Chief
    • Editorial Team
    • Submissions
    • Open Access Statement
    • Privacy Statement
    • Contact
  • Current
  • Archives
  • Register
  • Login
  • Search
Published since 1998
ISSN 1562-5419
16+
Language
  • Русский
  • English

Search

Advanced filters

Search Results

Automatic Annotation of Training Datasets in Computer Vision using Machine Learning Methods

Aleksey Konstantinovich Zhuravlev, Karen Albertovich Grigorian
718-729
Abstract:

This paper addresses the issue of automatic annotation of training datasets in the field of computer vision using machine learning methods. Data annotation is a key stage in the development and training of deep learning models, yet the process of creating labeled data often requires significant time and labor. This paper proposes a mechanism for automatic annotation based on the use of convolutional neural networks (CNN) and active learning methods.


The proposed methodology includes the analysis and evaluation of existing approaches to automatic annotation. The effectiveness of the proposed solutions is assessed on publicly available datasets. The results demonstrate that the proposed method significantly reduces the time required for data annotation, although operator intervention is still necessary.


The literature review includes an analysis of modern annotation methods and existing automatic systems, providing a better understanding of the context and advantages of the proposed approach. The conclusion discusses achievements, limitations, and possible directions for future research in this field.

Keywords: computer vision, machine learning, automatic data annotation, training datasets, image segmentation.
1 - 1 of 1 items
Information
  • For Readers
  • For Authors
  • For Librarians
Make a Submission
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo

Russian Digital Libraries Journal

ISSN 1562-5419

Information

  • About the Journal
  • Aims and Scopes
  • Themes
  • Author Guidelines
  • Submissions
  • Privacy Statement
  • Contact
  • eLIBRARY.RU
  • dblp computer science bibliography

Send a manuscript

Authors need to register with the journal prior to submitting or, if already registered, can simply log in and begin the five-step process.

Make a Submission
About this Publishing System

© 2015-2025 Kazan Federal University; Institute of the Information Society