Аннотация:
В статье предложена новая система для генерации стеганографического текста, скрывающая двоичные сообщения в семантически связном естественном языке с помощью скрытого пространства, обусловливающего большие языковые модели (LLM). Секретные сообщения сначала кодируются в непрерывные векторы с помощью обученного отображения двоичного кода в скрытое пространство, которое используется для управления генерацией текста посредством донастройки префикса. В отличие от предыдущих методов стеганографии на уровне токенов или синтаксиса, наш метод позволяет избежать явной манипуляции словами и вместо этого работает полностью в скрытом семантическом пространстве, что обеспечивает более плавные и менее заметные результаты. На стороне получателя скрытое представление восстанавливается из сгенерированного текста и декодируется обратно в исходное сообщение.
В качестве ключевого теоретического вклада мы предоставляем гарантию надежности: если восстановленный скрытый вектор находится в пределах ограниченного расстояния от изначального, обеспечивается точное восстановление сообщения, причем граница определяется константой Липшица декодера и минимальным отступом логитов. Этот формальный результат предлагает принципиальный подход к компромиссу между надежностью и емкостью в скрытых стеганографических системах. Эмпирическая оценка как на синтетических данных, так и в практических предметных областях, таких как отзывы на Amazon, показывает, что наш метод достигает высокой точности восстановления сообщений (выше 91%), высокую плавность текста и конкурентоспособную емкость до 6 бит на элемент предложения, сохраняя при этом устойчивость к нейронному стегоанализу. Эти результаты демонстрируют, что генерация со скрытым условием предлагает безопасный и практичный путь для встраивания информации в современные LLM.