Abstract:
This paper explores the potential of generative neural network simulations, focusing on the application of reinforcement learning methods and neural world models for creating interactive worlds. Key achievements in agent training using reinforcement learning are discussed. Special attention is given to neural world models, as well as generative models such as Oasis, DIAMOND, Genie, and GameNGen, which employ diffusion networks to generate realistic and interactive game worlds. The opportunities and limitations of generative simulation models are examined, including issues related to error accumulation and memory constraints, and their impact on the quality of generation. The conclusion presents suggestions for future research directions.