Аннотация:
Представлен подход к решению задачи анализа тональности в рамках тестирования SentiRuEval – открытого соревнования систем анализа тональности на русском языке. Описанный алгоритм был применен в дорожке по анализу тональности твитов о банках и телекоммуникационных компаниях. Для этих данных была разработана и оценена классификация на три класса: положительный, отрицательный и нейтральный.
Для решения поставленной задачи использовались различные алгоритмы машинного обучения. Признаками для классификатора являлись лингвистические данные, полученные из текста с помощью разработанного нами морфо-синтаксического анализатора. Нормализованные слова, а также синтаксические связи, оказались решающими признаками для достижения наилучшего результата, который был получен с помощью статистического алгоритма опорных векторов.
Оценка, проведенная организаторами конкурса, выявила высокое качество предложенного подхода, который занял первую строчку по трем из четырех мерам качества.