• Main Navigation
  • Main Content
  • Sidebar

Russian Digital Libraries Journal

  • Home
  • About
    • About the Journal
    • Aims and Scopes
    • Themes
    • Editor-in-Chief
    • Editorial Team
    • Submissions
    • Open Access Statement
    • Privacy Statement
    • Contact
  • Current
  • Archives
  • Register
  • Login
  • Search
Published since 1998
ISSN 1562-5419
16+
Language
  • Русский
  • English

Search

Advanced filters

Search Results

Temperature Distribution at the Border Astenosphere–Lithosphere (Mathematical Model)

Alexander Naumovich Chetyrbotsky
376-401
Abstract:

The convection of matter in the Earth's upper mantle is considered, which in the Oberbeck–Boussinesq approximation is due to thermogravitational differentiation. Within the framework of this approximation, a 2-D numerical simulation of convective flows of the medium matter was performed. The equation for temperature follows from the entropy balance relation, where, due to taking into account the variable viscosity in the system, there is an effect of energy dissipation. The boundary conditions correspond to the assignment of the temperature generally accepted at the boundary of the upper and lower mantles, and for the lateral boundaries - their thermal insulation. At the asthenosphere–lithosphere boundary, assumptions were made that the heat dynamics is determined by its flow from the asthenosphere layer closest to the boundary, part of the heat dissipation along the boundary, and heat consumption for melting the lithosphere matter. Numerical solution of the constitutive equations is carried out in variables stream function - vorticity. An iterative scheme for their solution is given. The issues of software implementation of the numerical simulation apparatus are discussed. It is shown that under such boundary conditions, a quasi-periodic regime of heat oscillations is formed in the system under consideration.

Keywords: asthenosphere, Oberbeck–Boussinesq approximation, mantle convection, boundary conditions, numerical algorithm.
1 - 1 of 1 items
Information
  • For Readers
  • For Authors
  • For Librarians
Make a Submission
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo

Russian Digital Libraries Journal

ISSN 1562-5419

Information

  • About the Journal
  • Aims and Scopes
  • Themes
  • Author Guidelines
  • Submissions
  • Privacy Statement
  • Contact
  • eLIBRARY.RU
  • dblp computer science bibliography

Send a manuscript

Authors need to register with the journal prior to submitting or, if already registered, can simply log in and begin the five-step process.

Make a Submission
About this Publishing System

© 2015-2025 Kazan Federal University; Institute of the Information Society