Применение синтетических данных в задаче обнаружения аномалий в сфере информационной безопасности
Main Article Content
Аннотация
В настоящее время в машинном обучении высокую актуальность имеют синтетические данные. Современные алгоритмы генерации синтетических данных дают возможность генерации данных, очень близких по статистическим свойствам к исходным данным. Синтетические данные используются на практике в широком спектре задач, в том числе связанных с аугментацией данных.
Предложен метод аугментации данных, совмещающий подходы увеличения объема выборки с помощью синтетических данных и генерации синтетических аномалий. Метод использован для решения задачи в сфере информационной безопасности, заключающейся в поиске аномалий в журналах сервера с целью обнаружения атак.
Модель, обученная в рамках решения названной задачи, показала высокие результаты. Это демонстрирует эффективность использования синтетических данных для увеличения объема выборки и генерации аномалий, а также возможность с высокой результативностью использовать эти подходы совместно.
Article Details
Библиографические ссылки
2. Assefa S., Dervovic D., Mahfouz M., Balch T., Reddy P., Veloso M. Generating Synthetic Data in Finance: Opportunities, Challenges and Pitfalls // Proceedings of the First ACM International Conference on AI in Finance. 2020. https://doi.org/10.1145/3383455.3422554
3. James S., Harbron C., Branson J., Sundler M. Synthetic data use: exploring use cases to optimise data utility // Discover Artificial Intelligence. 2021. V. 1. https://doi.org/10.1007/s44163-021-00016-y
4. Jordon J., Szpruch L. et al. Synthetic Data – what, why and how? // ArXiv. 2022. https://doi.org/10.48550/arXiv.2205.03257
5. Хафизов А.В., Григорьев М.В. Генерирование синтетических пористых изображений для аугментации данных с целью тренировки алгоритмов машинного обучения // Сенсорные системы. 2021. Т. 35, № 4. С. 340–347. https://doi.org/10.31857/S023500922104003X
6. Heine J., Fowler E.E.E., Berglund A., Schell M.J., Eschrich S. Techniques to produce and evaluate realistic multivariate synthetic data // Scientific Reports. 2023. V. 13. https://doi.org/10.1038/s41598-023-38832-0
7. Vicente C., Muzo D., Jiménez I., Fabelo H., Gram I.T., Løchen M., Granja C., Ruiz C. Evaluation of Synthetic Categorical Data Generation Techniques for Predicting Cardiovascular Diseases and Post-Hoc Interpretability of the Risk Factors // Applied Sciences. 2023. Vol. 13(7). https://doi.org/10.3390/app13074119
8. Wang Z., Wang H. Global Data Distribution Weighted Synthetic Oversampling Technique for Imbalanced Learning // IEEE Access. 2021. V. 9. P. 44770–44783. https://doi.org/10.1109/ACCESS.2021.3067060
9. Astrid M., Zaheer M., Lee S. Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection // 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). 2021. P. 207–214. https://doi.org/10.1109/ICCVW54120.2021.00028
10. Luo M., Wang K., Cai Z., Liu A., Li Y., Cheang C.F. Using Imbalanced Triangle Synthetic Data for Machine Learning Anomaly Detection // Computers, Materials & Continua. 2019. V. 58(1). P. 15–26. https://doi.org/10.32604/cmc.2019.03708
11. Salem M., Taheri S., Yuan J.S. Anomaly Generation Using Generative Adversarial Networks in Host-Based Intrusion Detection // 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference. 2018. P. 683–687. https://doi.org/10.1109/UEMCON.2018.8796769
12. Smolyakov D., Sviridenko N., Ishimtsev V., Burikov E., Burnaev E. Learning Ensembles of Anomaly Detectors on Synthetic Data // International Symposium on Neural Networks. 2019. https://doi.org/10.1007/978-3-030-22808-8_30
13. Емельянов С.О., Иванова А.А., Швец Е.А., Николаев Д.П. Методы аугментации обучающих выборок в задачах классификации изображений // Сенсорные системы. 2018. Т. 32, № 3. С. 236–245.
https://doi.org/10.1134/S0235009218030058
14. Ping H., Stoyanovich J., Howe B. DataSynthesizer: Privacy-Preserving Synthetic Datasets // Proceedings of the 29th International Conference on Scientific and Statistical Database Management. 2017. P. 1–5. https://doi.org/10.1145/3085504.3091117
15. DataResponsibly / DataSynthesizer // GitHub. URL: https://github.com/DataResponsibly/DataSynthesizer (дата обращения 12.01.2024)
16. Han S., Hu X., Huang H., Jiang M., Zhao Y. ADBench: Anomaly Detection Benchmark // Neural Information Processing Systems (NeurIPS). 2022.
17. Minqi824 / ADBench // GitHub. URL: https://github.com/Minqi824/ADBench (дата обращения 23.01.2024)
18. Liu F.T., Ting K.M., Zhou Z. Isolation Forest // Eighth IEEE International Conference on Data Mining. 2008. P. 413–422. https://doi.org/10.1109/ICDM.2008.17
19. Snoek J., Larochelle H., Adams R.P. Practical Bayesian Optimization of Machine Learning Algorithms // Advances in Neural Information Processing Systems 25. 2012.
20. Yang L., Shami A. On hyperparameter optimization of machine learning algorithms: Theory and practice // Neurocomputing. 2020. V. 415. P. 295–316. https://doi.org/10.1016/j.neucom.2020.07.061
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Представляя статьи для публикации в журнале «Электронные библиотеки», авторы автоматически дают согласие предоставить ограниченную лицензию на использование материалов Казанскому (Приволжскому) федеральному университету (КФУ) (разумеется, лишь в том случае, если статья будет принята к публикации). Это означает, что КФУ имеет право опубликовать статью в ближайшем выпуске журнала (на веб-сайте или в печатной форме), а также переиздавать эту статью на архивных компакт-дисках журнала или включить в ту или иную информационную систему или базу данных, производимую КФУ.
Все авторские материалы размещены в журнале «Электронные библиотеки» с ведома авторов. В случае, если у кого-либо из авторов есть возражения против публикации его материалов на данном сайте, материал может быть снят при условии уведомления редакции журнала в письменной форме.
Документы, изданные в журнале «Электронные библиотеки», защищены законодательством об авторских правах, и все авторские права сохраняются за авторами. Авторы самостоятельно следят за соблюдением своих прав на воспроизводство или перевод их работ, опубликованных в журнале. Если материал, опубликованный в журнале «Электронные библиотеки», с разрешения автора переиздается другим издателем или переводится на другой язык, то ссылка на оригинальную публикацию обязательна.
Передавая статьи для опубликования в журнале «Электронные библиотеки», авторы должны принимать в расчет, что публикации в интернете, с одной стороны, предоставляют уникальные возможности доступа к их материалам, но, с другой, являются новой формой обмена информацией в глобальном информационном обществе, где авторы и издатели пока не всегда обеспечены защитой от неправомочного копирования или иного использования материалов, защищенных авторским правом.
При использовании материалов из журнала обязательна ссылка на URL: http://rdl-journal.ru. Любые изменения, дополнения или редактирования авторского текста недопустимы. Копирование отдельных фрагментов статей из журнала разрешается для научных исследований, персонального использования, коммерческого использования до тех пор, пока есть ссылка на оригинальную статью.
Запросы на право переиздания или использования любых материалов, опубликованных в журнале «Электронные библиотеки», следует направлять главному редактору Елизарову А.М. по адресу: amelizarov@gmail.com
Издатели журнала «Электронные библиотеки» не несут ответственности за точки зрения, излагаемые в публикуемых авторских статьях.
Предлагаем авторам статей загрузить с этой страницы, подписать и выслать в адрес издателя журнала по электронной почте скан Авторского договора о передаче неисключительных прав на использование произведения.