• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Типы эмбеддингов и их применение в интеллектуальной академической генеалогии

Андреас Хачатурович Мариносян
240-261
Аннотация:

Рассмотрена проблема построения интерпретируемых векторных представлений научных текстов для задач интеллектуальной академической генеалогии. Предложена типология эмбеддингов, включающая три класса: статистические, выученные нейросетевые и структурированные символьные. Обоснована необходимость объединения достоинств нейросетевых (высокая семантическая точность) и символьных (интерпретируемость измерений) подходов. Для реализации такого гибридного подхода предложен алгоритм построения выученных символьных эмбеддингов путем регрессионного преобразования вектора внутреннего представления нейросетевой модели в интерпретируемый набор оценок.


Экспериментальная оценка алгоритма проведена на корпусе фрагментов авторефератов диссертаций по педагогическим наукам. Компактный трансформерный энкодер с регрессионной головой обучался воспроизводить тематические оценки, сгенерированные передовой генеративной языковой моделью. Сравнение шести режимов обучения (три типа регрессионной головы и два состояния энкодера) показало, что дообучение верхних слоев энкодера является ключевым фактором повышения качества. По результатам тестирования была выбрана наилучшая конфигурация, которая достигла коэффициента детерминации R² = 0.57 и точности определения трех наиболее релевантных концептов, равной 74%. Результаты подтверждают, что для определенного рода задач, в которых требуется формальное представление выходных данных, возможна аппроксимация поведения генеративной модели компактным энкодером с регрессионной головой при существенно меньших вычислительных затратах. В более широкой перспективе разработка алгоритмов построения выученных символьных эмбеддингов будет способствовать созданию такой модели формальной репрезентации научного знания, в которой конвергенция нейросетевых и символьных методов обеспечит как масштабируемость обработки научных текстов, так и интерпретируемость векторных представлений, кодирующих содержание.

Ключевые слова: эмбеддинги, академическая генеалогия, трансформерный энкодер, регрессионная голова, символьные эмбеддинги, тематический профиль, обработка естественного языка, интерпретируемость, большие языковые модели, наукометрия.

Где находятся лучшие признаки? Послойный анализ слоев трансформера для эффективной классификации эндоскопических изображений

Ахмад Таха, Рустам А. Лукманов
1207-1229
Аннотация:

В поисках путей развития медицинского искусственного интеллекта показано, что предварительно обученный Vision Transformer с линейным классификатором может достигать высокой и конкурентоспособной производительности в классификации эндоскопических изображений. Представлен систематический послойный анализ, который выявляет источник наиболее важных признаков, оспаривая общепринятую эвристику использования только последнего слоя. Установлен отчетливый феномен «пика перед концом», когда поздне-промежуточный слой предлагает более обобщаемое представление для последующей медицинской задачи. На стандартных наборах данных Kvasir и HyperKvasir предложенный подход с малым количеством параметров не только получить достаточно высокую точность, но и значительно сокращает вычислительные затраты. Полученные работы могут быть рекомендованы в качестве практического руководства по эффективному использованию признаков общих базовых моделей в клинических условиях.

Ключевые слова: классификация эндоскопических изображений, замороженный кодировщик, извлечение признаков, послойный анализ, визуальный трансформер (ViT), перенос обучения, самоконтролируемое обучение (SSL), медицинский искусственный интеллект.
1 - 2 из 2 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2026 Казанский (Приволжский) федеральный университет; Институт развития информационного общества