• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Методика сравнения программных решений распознавания текстов научных публикаций по качеству извлечения метаданных

Илия Игоревич Кузнецов, Олег Пантелеевич Новиков, Дмитрий Юрьевич Ильин
654-680
Аннотация:

Метаданные научных публикаций используются для построения каталогов, определения цитируемости публикаций и решения других задач. Автоматизация извлечения метаданных из PDF-файлов позволяет ускорить выполнение обозначенных задач, а от качества извлеченных данных зависит возможность их дальнейшего использования. Проанализированы существующие программные решения, в итоге отобраны три: GROBID, CERMINE, ScientificPdfParser. Предложена методика сравнения этих программных решений распознавания текстов научных публикаций по качеству извлечения метаданных. На основе методики проведен эксперимент по извлечению четырех типов метаданных (название, аннотация, дата публикации, имена авторов). Для сравнения программных решений использован набор из 112457 публикаций с разбиением на 23 предметные области, сформированный на основе данных Semantic Scholar. Приведен пример выбора эффективного программного решения извлечения метаданных в условиях заданных приоритетов для предметных областей и типов метаданных с использованием взвешенной суммы. Определено, что для приведенного примера CERMINE показывает эффективность на 10,5% выше, чем GROBID, и на 9,6% выше, чем ScientificPdfParser.

Ключевые слова: распознавание текста, научные публикации, метаданные, качество извлечения данных, методика.

Извлечение заголовков из PDF-документов научной тематики

Дмитрий Сергеевич Филиппов
392-411
Аннотация:

Актуальность представленного исследования обусловлена бедностью существующих подходов к извлечению заголовков из PDF-документов, предложенных в более ранних исследованиях, которые используют либо машинное обучение, либо простые эвристики. Цель настоящего исследования – предоставить более проработанные подходы к общей задаче извлечения заголовка документа и предложить лучший алгоритм выделения его из документов научной тематики. Основная методика, использованная нами при выборе решения, – рассмотреть, как можно большее количество различных ситуаций относительно форматирования заголовка, возникающих в разных документах, и предложить решение для каждой из них, а затем обобщить их в полноценный подход. Результаты выбранного подхода показали его эффективность по сравнению с методами других исследователей, если в нашем распоряжении находятся документы с различными вариациями оформления, структурной организации и форматирования. Данное исследование показало, что глубокое исследование задачи – перспективный путь для разработки лучших решений и инструментов. Статья будет полезна исследователям и разработчикам, которые часто встречаются с проблемой извлечения заголовков как одной из подзадач анализа документов.

Ключевые слова: Pdf processing, title extraction, header extraction, strategy based approach, title heuristic, structural analysis, style information, text analysis, document analysis, information extraction, анализ текстов, автоматическая обработка документов.
1 - 2 из 2 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества