• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Где находятся лучшие признаки? Послойный анализ слоев трансформера для эффективной классификации эндоскопических изображений

Ахмад Таха, Рустам А. Лукманов
1207-1229
Аннотация:

В поисках путей развития медицинского искусственного интеллекта показано, что предварительно обученный Vision Transformer с линейным классификатором может достигать высокой и конкурентоспособной производительности в классификации эндоскопических изображений. Представлен систематический послойный анализ, который выявляет источник наиболее важных признаков, оспаривая общепринятую эвристику использования только последнего слоя. Установлен отчетливый феномен «пика перед концом», когда поздне-промежуточный слой предлагает более обобщаемое представление для последующей медицинской задачи. На стандартных наборах данных Kvasir и HyperKvasir предложенный подход с малым количеством параметров не только получить достаточно высокую точность, но и значительно сокращает вычислительные затраты. Полученные работы могут быть рекомендованы в качестве практического руководства по эффективному использованию признаков общих базовых моделей в клинических условиях.

Ключевые слова: классификация эндоскопических изображений, замороженный кодировщик, извлечение признаков, послойный анализ, визуальный трансформер (ViT), перенос обучения, самоконтролируемое обучение (SSL), медицинский искусственный интеллект.

Условная генерация электрокардиограмм с помощью иерархических вариационных автокодировщиков

Иван Анатольевич Свиридов, Константин Сергеевич Егоров
1186-1206
Аннотация:

Сердечно-сосудистые заболевания являются одной из основных причин смертности. Автоматический анализ электрокардиограмм (ЭКГ) может существенно облегчить работу врачей, но его эффективность ограничена нехваткой и несбалансированностью данных. Создание синтетических ЭКГ помогает частично решить эти проблемы. Хотя чаще всего для этого применяются генеративно-состязательные сети (GAN), но последние исследования показали, что вариационные автокодировщики (VAE) могут обеспечивать сопоставимое качество.


В работе представлена модель cNVAE-ECG — модификация Nouveau VAE (NVAE), способная генерировать 12 отведений 10-секундных ЭКГ с различными патологиями. Используя компактную схему работы с каналами и встроенные представления классов для условной генерации, cNVAE-ECG улучшает результаты в задачах бинарной и multi-label классификации, обеспечивая прирост метрики AUROC до 2% по сравнению с моделями на основе GAN. Модель представлена в открытом доступе: https://github.com/univanxx/cNVAE_ECG.

Ключевые слова: ЭКГ, вариационный автокодировщик, условная генерация, GAN.

Использование протоколов REST API и WebSocket для структуризации трехзвенного уровня эмерджентных систем и отображения медиасистем

Михаил Михайлович Благирев, Алексей Олегович Костыренков
415-428
Аннотация:

Проведен анализ скорости и эффективности передачи данных с использованием протоколов WebSocket и REST API. Для сравнения скорости обработки потоковых объектов и выявления более надежной технологии для разработки API-интерфейсов использованы разложения базовых функций в ряды Тейлора и Фурье. В результате выявлено, что REST API является более быстрым и доступным ресурсом для передачи информационных данных в побитовом преобразовании, а масштабируемость этого протокола преобладает в количестве обрабатываемых единиц, что позволяет расширить количество проводимых тестов.

Ключевые слова: масштабируемость, протоколирование, структуризация, REST API, WebSocket.
1 - 3 из 3 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2026 Казанский (Приволжский) федеральный университет; Институт развития информационного общества