• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Классификация изображений с использованием обучения с подкреплением

Артем Александрович Елизаров, Евгений Викторович Разинков
1172-1191
Аннотация:

В последнее время активно развивается такое направление машинного обучения, как обучение с подкреплением. Как следствие предпринимаются попытки использования обучения с подкреплением для решения задач компьютерного зрения, в частности для решения задачи классификации изображений. Задачи компьютерного зрения являются на сегодняшний день одними из наиболее актуальных задач искусственного интеллекта.


В статье предложен метод классификации изображений в виде глубокой нейронной сети с использованием обучения с подкреплением. Идея разработанного метода сводится к решению задачи о контекстном многоруком бандите с помощью различных стратегий достижения компромисса между эксплуатацией и исследованием и алгоритмов обучения с подкреплением. Рассмотрены такие стратегии, как -жадная, -softmax, -decay-softmax и метод UCB1, и такие алгоритмы обучения с подкреплением, как DQN, REINFORCE и A2C. Проведен анализ влияния различных параметров на эффективность работы.

Ключевые слова: машинное обучение, классификация изображений, обучение с подкреплением, задача о контекстном многоруком бандите.

Генеративная симуляция игрового окружения в реальном времени

Эдуард Сергеевич Большаков, Влада Владимировна Кугуракова
188-212
Аннотация:

Рассмотрены возможности генеративных нейросетевых симуляций с фокусом на применении методов обучения с подкреплением и нейросетевых мировых моделей для создания интерактивных миров. Описаны ключевые достижения в области обучения агентов с использованием обучения с подкреплением. Особое внимание уделено нейросетевым моделям мира, а также генеративным моделям, таким как Oasis, DIAMOND, Genie и GameNGen, использующим диффузионные сети для создания реалистичных и интерактивных игровых миров. Рассмотрены возможности и ограничения моделей генеративных симуляций, такие как проблемы с аккумуляцией ошибки и ограничениями памяти, а также их влияние на качество генерации. В заключении названы темы дальнейших исследований.

Ключевые слова: видеоигры, игровое окружение, генеративная симуляция, обучение с подкреплением, генеративные нейросети, симуляция игрового процесса, мировые модели.

Разработка системы эмоциональной оценки на основе обучения с подкреплением и нейробиологически инспирированных методов

Евгения Юрьевна Майорова, Максим Олегович Таланов, Роберт Лоу
193-215
Аннотация:

Объектом проведенного исследования является эмоциональная оценка искусственного интеллекта. В качестве системы реализации эмоциональной оценки выбрана система обучения с подкреплением. В результате симуляции построенной модели получены графики, показывающие активность структур мозга, участвующих в процессе их воздействия друг на друга. В ходе настройки системы удалось добиться четырех вспышек активности на таламусе вместо ожидаемых пяти.

Ключевые слова: NEST, NeuCogAR, куб Лёвхейма, эмоциональная оценка.

Генеративные методы для создания адаптивных играбельных персонажей в играх-сервисах

Тимур Рузелевич Арсланов
468-483
Аннотация:

В условиях роста популярности игр-сервисов, требующих постоянного обновления контента для удержания игроков, актуальной задачей становится автоматизация создания адаптивных играбельных персонажей. Нами рассмотрены существующие подходы к генерации персонажей.


Текущие решения не предусматривают долгосрочную адаптацию под стиль игрока и зависят от ручного проектирования. Для устранения этого недостатка предложена трёхкомпонентная система, сочетающая моделирование действий игрока на основе реплеев, генерацию персонажей через комбинирование механик и балансировку параметров, а также автоматическую валидацию через симуляции для оценки баланса и соответствия игровому стилю конкретного человека.


Работа обобщает современные исследования, демонстрируя потенциал генеративных методов для снижения ресурсозатрат при разработке игр-сервисов. Результаты могут быть использованы для ускорения прототипирования и поддержки долгосрочной жизнеспособности игровых проектов.

Ключевые слова: игры-сервисы, геймдизайн, игровые персонажи, видеоигры, процедурная генерация.
1 - 4 из 4 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества