• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Опыт построения системы автоматического определения тональности объектов на основе синтактико-семантического анализатора

Павел Юрьевич Поляков, Мария Викторовна Калинина, Владимир Владимирович Плешко
185-202
Аннотация: Исследуется применение лингвистического подхода для решения задачи автоматического определения тональности объекта. Исследование проводилось в рамках цикла тестирования систем автоматического анализа тональности SentiRuEval. Задание, предложенное организаторами дорожки, заключалось в том, чтобы определить мнение пользователя (положительное, отрицательное или нейтральное) по отношению к операторам сотовой связи на материале сообщений социальной сети Twitter и новостей. Авторы настоящей работы исключили новостные сообщения из тестовой коллекции, так как формальные тексты существенно отличаются от неформальных по своей структуре и лексике и, следовательно, требуют другого подхода. При решении поставленной задачи был использован лингвистический метод, основанный на синтактико-семантическом анализе. Согласно этому подходу тональная лексика привязывается к объекту на одной из двух последовательных стадий. Первая стадия включает в себя использование семантических шаблонов, которые сравниваются с деревом синтаксического разбора предложения; вторая стадия использует эвристики для связывания тональной лексики с объектом оценки в случае, когда синтаксические связи между ними отсутствуют. Машинное обучение не применялось. Метод продемонстрировал очень хорошие результаты, которые примерно совпадают с лучшими результатами методов с использованием машинного обучения и гибридных методов.
Ключевые слова: определение тональности, анализ мнений, тональность объектов, тональность атрибутов, синтактико-семантический анализ, семантические шаблоны.

Разработка системы визуального восприятия игровых агентов в видеоиграх

Артём Михайлович Примаченко, Мурад Рустэмович Хафизов
506-531
Аннотация:

Представлен алгоритм функционирования системы визуального восприятия для игровых агентов, реализованный в игровом движке Unity. Предложенный метод основан на сравнении изображений с двух камер, учитывающих сложные визуальные эффекты (освещение, тени, маскировку), и дополнен проверкой прямой видимости, учетом скорости движения объекта, и механикой постепенного обнаружения. Тестирование системы показало значительное повышение реалистичности обнаружения по сравнению с традиционными методами при сохранении производительности в пределах небольшой дополнительной нагрузки на процессор. Проведена оптимизация алгоритма с использованием Unity Job System и динамической активации камер. Проведен также анализ научной литературы по схожим решениям, выявлены их сильные и слабые стороны. Результаты могут быть применены в разработке видеоигр для создания реалистичного поведения неигровых персонажей, особенно в играх с элементами скрытности.

Ключевые слова: видеоигры, искусственный интеллект, система восприятия, NPC, неигровые персонажи, игровые агенты, стелс-механики, Unity, рендеринг, компьютерное зрение, оптимизация, геймдизайн.
1 - 2 из 2 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества