• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Атрибуция архивных рукописных писем с использованием сиамских нейронных сетей

Наталия Михайловна Пронина
1454-1480
Аннотация:

Предложен метод автоматической атрибуции архивных рукописных писем на основе сиамской нейронной сети, решающий ключевую проблему цифровой гуманитаристики – установление авторства исторических документов. Актуальность исследования обусловлена массовой оцифровкой архивов XVII–XIX вв., атрибуция которых затруднена из-за неполных исходных сведений об авторах.


Метод адаптирован к работе с реальным корпусом текстов и учитывает характерные для архивов проблемы: некачественные оцифровки, значительную вариативность почерка и выраженный дисбаланс классов (от 1 до 50 и более образцов на автора). Применение сиамской архитектуры позволяет получать дискриминативные векторные представления, эмбеддинги, на основе которых выполняется не только классификация документов известных авторов, но и эффективно выявляются рукописи, не принадлежащие ни одному из них. Это сужает круг кандидатов для последующей экспертной проверки.


Представлен алгоритм предобработки данных и проведено сравнительное исследование двух подходов к анализу текста: на уровне фрагментов изображения (300 × 300 пикселей) и уровне отдельных строк. Разработанный инструмент предлагает архивным работникам и филологам эффективное решение для предварительной сортировки и атрибуции крупных массивов рукописных документов.

Ключевые слова: сиамская нейронная сеть, идентификация, верификация, атрибуция, рукописный текст, архивные документы, сверточная нейронная сеть, рекуррентная нейронная сеть.

Инструмент для оперативной диагностики памяти нейросетевых архитектур языковых моделей

Павел Андреевич Гавриков, Азамат Комилжон угли Усманов, Дмитрий Реваев, Сергей Николаевич Бузыканов
1346-1367
Аннотация:

Большие языковые модели (Large Language Models, LLM) прошли путь от простых N-граммных систем до современных универсальных архитектур, однако ключевым ограничением остается квадратичная сложность механизма самовнимания по длине входной последовательности. Это существенно увеличивает потребление памяти и вычислительных ресурсов, а с появлением задач, требующих рекордно длинных контекстов, создает необходимость разработки новых архитектурных решений. Поскольку для исследования предлагаемой архитектуры требуется длительное и дорогостоящее обучение полновесной сети, необходимо разработать инструмент, который позволял бы быстро дать предварительную оценку архитектуре с точки зрения внутренней памяти.


В настоящей работе предложен метод количественной оценки внутренней памяти нейросетевых архитектур на основе синтетических тестов, не требующих больших корпусов данных. Под внутренней памятью понимается объем информации, который модель способна воспроизвести без обращения к исходным входам.


Для верификации подхода разработан программный комплекс, апробированный на архитектурах GPT-2 и Mamba. Использованы задачи копирования, инверсии и извлечения значения по ключу. Проведенное сравнение по точности предсказаний, распределению ошибок и вычислительным затратам позволяет оперативно оценивать эффективность и перспективность архитектур LLM.

Ключевые слова: большие языковые модели, архитектура нейросетей, внутренняя память, долговременное хранение информации, обработка последовательностей, измерение функциональной памяти, сравнение архитектур.

Решение задачи классификации эмоционального тона сообщения с определением наиболее подходящей архитектуры нейронной сети

Данис Ильмасович Багаутдинов, Рихам Салман, Владислав Алексеевич Алексеев, Рустамджон Муроджонович Усмонов
396-413
Аннотация:

Для определения наиболее эффективного подхода к решению задачи классификации эмоционального тона сообщения проведено обучение выбранных моделей нейронной сети на различных наборах обучающих данных. На основе такого показателя, как процентное соотношение правильно данных ответов на тестовом наборе данных, сравнены комбинации наборов обучающих данных и различных моделей, обученных на основе этих данных. Произведено обучение четырех моделей нейронной сети на трех различных наборах обучающих данных. В результате сравнения точности ответов каждой модели, обученной на разных обучающих данных, сделаны выводы о выборе модели нейронной сети, наиболее подходящей для решения поставленной задачи.

Ключевые слова: NLP, sentiment detection, neural networks, comparison of neural network models, LSTM, CNN, BiLSTM.

Классификация изображений с помощью сверточных нейронных сетей

Сергей Алексеевич Филиппов
366-382
Аннотация:

Для классификации изображений в настоящее время можно применить множество различных инструментов, каждый из которых направлен на решение определенного спектра задач. В статье проведен краткий обзор библиотек и технологий для классификации изображений. Построена архитектура простой свёрточной нейронной сети для классификации изображений.


Были проведены эксперименты по распознаванию изображений с такими популярными нейронными сетями, как VGG16 и ResNet 50. Обе нейронные сети показали хорошие результаты. Однако ResNet 50 переобучилась из-за того, что в наборе данных присутствовали однотипные изображения для обучения, поскольку в данной нейронной сети больше слоев, позволяющих считывать признаки объектов на изображениях. С обученными моделями был проведен сравнительный анализ по распознаванию изображений, специально подготовленных для этого эксперимента.


Для классификации изображений в настоящее время можно применить множество различных инструментов, каждый из которых направлен на решение определенного спектра задач. В статье проведен краткий обзор библиотек и технологий для классификации изображений. Построена архитектура простой свёрточной нейронной сети для классификации изображений.


Были проведены эксперименты по распознаванию изображений с такими популярными нейронными сетями, как VGG16 и ResNet 50. Обе нейронные сети показали хорошие результаты. Однако ResNet 50 переобучилась из-за того, что в наборе данных присутствовали однотипные изображения для обучения, поскольку в данной нейронной сети больше слоев, позволяющих считывать признаки объектов на изображениях. С обученными моделями был проведен сравнительный анализ по распознаванию изображений, специально подготовленных для этого эксперимента.

Ключевые слова: распознавание изображений, нейронная сеть, сверточная нейронная сеть, классификация изображений, машинное обучение.

Нейросетевая архитектура воплощенного интеллекта

Айрат Рафкатович Нурутдинов
598-655
Аннотация:

В последние годы достижения в области искусственного интеллекта (ИИ) и машинного обучения обусловлены успехами в разработке больших языковых моделей (LLM) на основе глубоких нейронных сетей. В то же время, несмотря на существенные возможности, LLM имеет такие принципиальные ограничения, как спонтанная недостоверность в фактах и суждениях; допущение простых ошибок, диссонирующих с высокой компетентностью в целом; легковерие, проявляющееся в готовности принимать за истину заведомо ложные утверждения пользователя; отсутствие сведений о событиях, произошедших после завершения обучения.


Вероятно, ключевой причиной является то, что обучение биологического интеллекта происходит через усвоение неявных знаний воплощенной формой интеллекта, позволяющей решать интерактивные физические задачи реального мира. Биоинспирированные исследования нервных систем организмов позволяют рассматривать мозжечок, координирующий движения и поддерживающий равновесие, в качестве главного кандидата для раскрытия методов реализации воплощенного физического интеллекта. Его простая повторяющаяся структура и способность управлять сложными движениями дают надежду на возможность создания аналога адаптивным нейронным сетям.


В настоящей работе изучается биоинспирированная архитектура мозжечка как форма аналоговых вычислительных сетей, способная моделировать сложные физические системы реального мира. В качестве простого примера представлена реализация воплощенного ИИ в виде многокомпонентной модели щупальца осьминога, демонстрирующей потенциал в создании адаптивных физических систем, обучающихся и взаимодействующих с окружающей средой.

Ключевые слова: Искусственные нейронный сети, большие языковые модели, неявное обучение, мозжечок, аналоговые компьютеры, воплощенный интеллект, мягкие роботы, осьминоги.
1 - 5 из 5 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества