• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Создание генератора псевдослов и классификация их схожести со словами словаря русского языка методами машинного обучения

Кирилл Алексеевич Ромаданский, Артемий Евгеньевич Ахаев, Тагмир Радикович Гилязов
145-162
Аннотация:

Под псевдословом понимается единица речи или текста, которая выглядит как реальное слово на русском языке, но на самом деле не имеет значения, а под настоящим или естественным словом – единица речи или текста, которая имеет толкование и представлена в словаре. Представлены две модели для работы с русским языком: генератор псевдослов и классификатор, оценивающий степень схожести введенной последовательности символов с настоящими словами. Классификатор использован для оценки результатов генератора. Обе модели основаны на рекуррентной нейронной сети с долгой краткосрочной памятью и обучены на датасете существительных русского языка. В результате создан файл, содержащий список сгенерированных псевдослов, оцененных классификатором. Псевдослова могут найти применение в задачах нейминга, брендирования и макетирования, в искусстве, для создания креативных произведений, и в языковых исследованиях, для изучения структуры языка и слов.

Ключевые слова: генерация слов, псевдослово, нейронная сеть, рекуррентная нейронная сеть, долгая краткосрочная память.

Модель лингвистического графа знаний «Turklang» как база для создания инструментов обучения тюркским языкам

Айрат Рафизович Гатиатуллин, Николай Аркадиевич Прокопьев
251-265
Аннотация:

Описаны элементы модели лингвистического графа знаний «Turklang», разработанного в Институте прикладной семиотики АН РТ и используемого в качестве базы для создания ряда лингвистических ресурсов и инструментов: портал «Тюркская морфема», электронный корпус татарского языка «Туган Тел», лингвистические процессоры.


Для создания образовательной среды необходимы предметно-ориентированные графы знаний, для получения которых не применимы методы создания общих и открытых графов. В работе описаны лингвистические графы знаний, которые отображают, с одной стороны, потенциальные возможности тюркских языков, с другой стороны, примеры реального использования в текстах. Особенность этих графов знаний заключается в том, что они содержат лингвистические единицы разных языковых уровней, а также семантические универсалии, соответствующие значениям этих лингвистических единиц, которые встроены в единую модель лингвистического графа знаний. Структура такого графа знаний позволяет формировать учебные курсы, строить индивидуальную образовательную траекторию, а также создавать задания и средства автоматизированной проверки в рамках контроля знаний при обучении тюркским языкам. Это дает возможность разрабатывать впоследствии, на основе этих графов, программы обучения с учетом структурно-функциональных особенностей тюркских языков, а также способствует реализации индивидуальных целей обучающихся.

Ключевые слова: граф знаний, база знаний, лингвистический ресурс, лингвистическая единица, малоресурсные языки, тюркские языки, веб-портал, электронное образование, контроль знаний, автоматизированная оценка ответа.
1 - 2 из 2 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества