• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Оценка неопределенности в трансформерных цепях на основе принципа согласованности эффективной информации

Анатолий Анатольевич Красновский
1103-1119
Аннотация:

Механистическая интерпретируемость позволяет выявлять функциональные подграфы в больших языковых моделях (LLM), известные как трансформерные цепи (Transformer Circuits, TC), которые реализуют конкретные алгоритмы. Однако отсутствует формальный способ, позволяющий за один проход количественно оценить, когда активная цепь ведет себя согласованно и, следовательно, ее состояние может быть признано корректным. Опираясь на ранее предложенную автором пучково‑теоретическую формализацию причинной эмерджентности (Krasnovsky, 2025), мы специализируем ее для трансформерных цепей и вводим безразмерную однопроходную оценку согласованности эффективной информации (Effective Information Consistency Score, EICS). EICS сочетает нормализованную несогласованность пучка, вычисляемую из локальных якобианов и активаций, с гауссовским прокси EI для причинной эмерджентности на уровне цепи, полученным из того же состояния прямого прохода. Такая конструкция является прозрачной (white‑box), однопроходной и делает единицы измерения явными, так что оценка безразмерна. Представлены практические рекомендации по интерпретации оценки, учету вычислительных затрат (с быстрыми и точными режимами) и анализ простейшего примера для проверки на адекватность.

Ключевые слова: механистическая интерпретируемость, трансформерные цепи, теория пучков, причинная эмерджентность, количественная оценка неопределенности, большие языковые модели (LLM).

Ядро верифицируемой объяснимости: гибридная архитектура GD-ANFIS/SHAP для XAI 2.0 *

Юрий Владиславович Трофимов, Александр Дмитриевич Лебедев, Андрей Сергеевич Ильин, Алексей Николаевич Аверкин
1230-1252
Аннотация:

Предложена гибридная архитектура Explainable AI, совмещающая полностью дифференцируемую нейро-нечеткую модель GD-ANFIS и пост-хок метод SHAP. Интеграция выполнена с целью реализации принципов XAI 2.0, требующих одновременной прозрачности, проверяемости и адаптивности объяснений.


GD-ANFIS формирует человеческо-читаемые правила типа Такаги – Сугено, обеспечивая структурную интерпретируемость, тогда как SHAP вычисляет количественные вклады признаков по теории Шепли. Для объединения этих слоев разработан механизм компаративного аудита: он автоматически сопоставляет наборы ключевых признаков, проверяет совпадение направлений их влияния и анализирует согласованность между числовыми оценками SHAP и лингвистическими правилами GD-ANFIS. Такой двухконтурный контроль повышает доверие к выводам модели и позволяет оперативно выявлять потенциальные расхождения.


Эффективность подхода подтверждена экспериментами на четырех разнородных наборах данных. В медицинской задаче классификации Breast Cancer Wisconsin достигнута точность 0.982; в задаче глобального картирования просадок грунта — 0.89. В регрессионных тестах на Boston Housing и мониторинге качества поверхностных вод получены RMSE 2.30 и 2.36 соответственно при полном сохранении интерпретируемости. Во всех случаях пересечение топ-признаков в объяснениях двух методов составляло не менее 60%, что демонстрирует высокую согласованность структурных и числовых трактовок.


Предложенная архитектура формирует практическую основу для ответственного внедрения XAI 2.0 в критически важных областях — от медицины и экологии до геоинформационных систем и финансового сектора.

Ключевые слова: объяснимый искусственный интеллект, XAI 2.0, ANFIS, SHAP, компаративный анализ, интерпретируемость, пространственный анализ, доверенность.
1 - 2 из 2 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества