Аннотация:
Предложена гибридная архитектура Explainable AI, совмещающая полностью дифференцируемую нейро-нечеткую модель GD-ANFIS и пост-хок метод SHAP. Интеграция выполнена с целью реализации принципов XAI 2.0, требующих одновременной прозрачности, проверяемости и адаптивности объяснений.
GD-ANFIS формирует человеческо-читаемые правила типа Такаги – Сугено, обеспечивая структурную интерпретируемость, тогда как SHAP вычисляет количественные вклады признаков по теории Шепли. Для объединения этих слоев разработан механизм компаративного аудита: он автоматически сопоставляет наборы ключевых признаков, проверяет совпадение направлений их влияния и анализирует согласованность между числовыми оценками SHAP и лингвистическими правилами GD-ANFIS. Такой двухконтурный контроль повышает доверие к выводам модели и позволяет оперативно выявлять потенциальные расхождения.
Эффективность подхода подтверждена экспериментами на четырех разнородных наборах данных. В медицинской задаче классификации Breast Cancer Wisconsin достигнута точность 0.982; в задаче глобального картирования просадок грунта — 0.89. В регрессионных тестах на Boston Housing и мониторинге качества поверхностных вод получены RMSE 2.30 и 2.36 соответственно при полном сохранении интерпретируемости. Во всех случаях пересечение топ-признаков в объяснениях двух методов составляло не менее 60%, что демонстрирует высокую согласованность структурных и числовых трактовок.
Предложенная архитектура формирует практическую основу для ответственного внедрения XAI 2.0 в критически важных областях — от медицины и экологии до геоинформационных систем и финансового сектора.