• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Программное средство оптимизации процессов видеопроизводства

Рустем Фаридович Давлетшин, Ирина Сергеевна Шахова
478-502
Аннотация:

Предложены программные механизмы, направленные на оптимизацию процессов видеопроизводства для авторов художественных видеоматериалов – материалов, предполагающих предварительную постановочную работу. Разработан механизм создания анимированных трехмерных планов съемки (раскадровок) с использованием дополненной реальности для позиционирования и анимации перемещения актеров. С целью преодоления ограничений операционной системы iOS, связанных с доступом к сенсорам, разработан механизм раздельного захвата аудио- и видеопотоков с датчиков устройства для проведения записи, а также их последующей синхронизации по временным меткам для сохранения в память устройства. Отслеживание соблюдения правил композиционного построения и анализ качества изображения на предмет расфокусировки камеры реализованы с использованием технологий компьютерного зрения. Также представлены механизмы работы со сценарием, включающие алгоритмы обработки текста для вывода на экран в виде субтитров, а также распознавания речи актеров и сравнения её с текстом сценария.

Ключевые слова: видеопроизводство, мобильное кино, дополненная реальность, раскадровка, видеозапись, автоматизация, программное решение.

Система тестирования контроллеров, основанная на распознавании текста на экране

Александр Александрович Докукин
1368-1384
Аннотация:

Описано решение задачи тестирования контроллеров на основе чтения информации с их экрана. Для этого разработана программно-аппаратная система, состоящая из камеры и программных модулей, реализующих необходимые алгоритмы и методы: модуля предобработки изображения; модуля определения типа меню; модуля обработки символов шрифта; модуль чтения текста, в том числе, написанного различными шрифтами; собственно модуля тестирования. Система реализована для контроллеров определенного типа с монохромным дисплеем 128 х 64 точек. Все методы реализованы на языке Python с использованием популярных библиотек. Система внедрена в эксплуатацию и на данный момент осуществляет автоматизацию нескольких наиболее трудоемких тестов. Поддерживается расширение их набора в виде плагинов.

Ключевые слова: компьютерное зрение, распознавание текста, тестирование контроллеров.

Экспериментальное исследование порогового метода HSV и нейронной сети U-Net в задаче распознавания пожаров

Максим Владимирович Бобырь, Наталья Анатольевна Милостная, Богдан Андреевич Бондаренко, Максим Максимович Бобырь
829-851
Аннотация:

Проведен сравнительный анализ методов сегментации изображений пожара с использованием пороговой обработки в цветовом пространстве HSV и нейронной сети U-Net. Цель исследования заключалась в оценке эффективности этих подходов по времени выполнения и точности детекции огня на основе метрик RMSE, IoU, Dice и MAPE. Эксперименты были проведены на четырех различных изображениях пожара с вручную подготовленными истинными масками пожаров. Результаты показали, что метод HSV обеспечивает высокую скорость обработки (0.0010–0.0020 с), но склонен к детекции не только огня, но и дыма, что снижает его точность (IoU 0.0863–0.3357, Dice 0.1588–0.5026). Нейронная сеть U-Net демонстрирует более высокую точность сегментации огня (IoU – до 0.6015, Dice – до 0.7512) за счет избирательного выделения пламени, однако требует значительно большего времени (1.2477–1.3733 с) и может недооценивать общую площадь пожара (MAPE – до 78.5840%). Визуальная оценка подтвердила различия в поведении методов: HSV захватывает дым как часть целевой области, тогда как U-Net фокусируется исключительно на огне. Выбор между методами зависит от приоритетов задачи: скорости или точности. Предложены направления дальнейших исследований, включая оптимизацию U-Net и разработку гибридных подходов.

Ключевые слова: сегментирование, локализация пожаров, HSV-сегментация, U-Net.
1 - 3 из 3 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2026 Казанский (Приволжский) федеральный университет; Институт развития информационного общества