• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Семантический анализ документов в системе управления цифровыми научными коллекциями

Шамиль Махмутович Хайдаров
61-85
Аннотация: Предложены методы семантического анализа документов в системе управления цифровыми научными коллекциями, в том числе электронными научными журналами. Рассмотрены методы обработки документов, содержащих математические формулы, а также способы конвертации этих документов из формата OpenXML в формат TeX. Разработан алгоритм поиска по формулам в коллекциях математических документов, хранящихся в формате OpenXML. Алгоритм реализован в виде онлайн-сервиса на платформе science.tatarstan.
Ключевые слова: семантический анализ, издательские системы.

Базовые сервисы фабрики метаданных цифровой математической библиотеки Lobachevskii-DML

Полина Олеговна Гафурова, Александр Михайлович Елизаров, Евгений Константинович Липачёв
336-381
Аннотация: Решен ряд задач, связанных с построением фабрики метаданных цифровой математической библиотеки Lobachevskii-DML. Под фабрикой метаданных понимается система взаимосвязанных программных инструментов, направленных на создание, обработку, хранение и управление метаданными объектов цифровых библиотек и позволяющих интегрировать создаваемые электронные коллекции в агрегирующие цифровые научные библиотеки. С целью выбора оптимальных таких программных инструментов из существующих и их модернизации: обсуждены особенности представления метаданных документов различных электронных коллекций, связанные как с применяемыми форматами, так и с изменениями состава и полноты набора метаданных в течение всего времени издания соответствующего научного журнала;представлены и охарактеризованы программные инструменты управления научным контентом и методы организации автоматизированной интеграции репозиториев математических документов с другими информационными системами;обсуждена такая важная функция фабрики метаданных цифровой библиотеки, как нормализация метаданных в соответствии с форматами других агрегирующих библиотек.В результате разработки фабрики метаданных цифровой математической библиотеки Lobachevskii-DML предложена система сервисов автоматизированного формирования метаданных электронных математических коллекций; разработан xml-язык представления метаданных, основанный на Journal Archiving and Interchange Tag Suite (NISO JATS); созданы программные инструменты нормализации метаданных электронных коллекций научных документов в форматах, разработанных международными организациями – агрегаторами ресурсов по математике и Computer Science; разработан алгоритм приведения метаданных к формату oai_dc и генерации структуры архивов для импорта в цифровое хранилище DSpace; предложены и реализованы методы интеграции электронных математических коллекций Казанского университета в отечественные и зарубежные цифровые математические библиотеки.
Ключевые слова: цифровые библиотеки, цифровая математическая библиотека, формирование метаданных, извлечение метаданных, нормализация метаданных, фабрика метаданных, NISO JATS, семантические связи, Lobachevskii-DML.

Формализация процессов формирования пользовательских коллекций в цифровом пространстве научных знаний

Николай Евгеньевич Каленов, Ирина Николаевна Соболевская, Александр Николаевич Сотников
433-450
Аннотация: Исследована задача формирования цифрового пространства научных знаний (ЦПНЗ). Рассмотрено отличие этого понятия от общего понятия пространства знаний. ЦПНЗ представлено как множество, содержащее объекты, верифицированные мировым научным сообществом. Формой структурированного представления цифрового пространства знаний является семантическая сеть, основной принцип организации которой основан на системе классификации объектов и последующем построении их иерархии, в частности, по принципу наследования. Введена классификация объектов, составляющих контент ЦПНЗ. Предложена модель ЦПНЗ как совокупности непересекающихся множеств, содержащих цифровые образы реальных объектов и их характеристики, обеспечивающие отбор и визуализацию объектов в соответствии с многоаспектными пользовательскими запросами. Определено понятие пользовательской коллекции, предложена иерархическая классификация типов пользовательских коллекций. Использование понятий теории множеств при построении ЦПНЗ позволяет разбивать информацию по уровням детализации и формализовать алгоритмы обработки пользовательских запросов, что проиллюстрировано конкретными примерами.
Ключевые слова: семантическая сеть, информационное пространство, научные знания, электронная библиотека, уровни детализации, иерархия информационных объектов.

Цифровая инфраструктура электронного научного журнала: автоматизация редакционно-издательских процессов и система сервисов

Миляуша Салахутдиновна Галявиева, Александр Михайлович Елизаров, Евгений Константинович Липачёв
408-465
Аннотация:

Описаны современные модели и средства публикации и распространения научных знаний. Охарактеризованы современные информационные системы управления научными изданиями и сервисы, определяющие их функциональность.

Введено понятие цифровой инфраструктуры электронного научного журнала как комплекса, который объединяет программную платформу, реализующую основные рабочие процессы управления электронным журналом, и информационные системы, которые обеспечивают функционирование как основных, так и дополнительных сервисов, учитывающих, в частности, специфику предметной области журнала.

Представлен подход к организации цифровой инфраструктуры электронного научного журнала на основе открытой программной системы Open Journal Systems (OJS). Предложены сервисы, расширяющие функциональные возможности этой системы и учитывающие специфику предметной области научных журналов. На основе технологии расширения функционала OJS созданы программные модули, обеспечивающие автоматизацию ряда редакционных процессов электронного научного журнала.

Представлена система сервисов автоматической обработки коллекций научных документов. Эти сервисы обеспечивают проверку соответствия документов коллекций принятым правилам формирования коллекций и преобразования документов в установленные форматы; структурный анализ документов и извлечение метаданных, а также их интеграцию в научное информационное пространство. Система сервисов позволяет автоматически выполнять набор операций, который не реализуем за практически приемлемое время при традиционной «ручной» обработке электронного контента, и предназначена для обработки больших коллекций научных документов.

Охарактеризованы алгоритмы автоматической стилевой валидации текстов на этапе регистрации статьи в информационной системе электронного научного журнала, автоматического подбора рецензентов, рассылки уведомлений и контроля сроков рецензирования.

Представлены методы обработки документов, содержащих математические формулы, в частности, алгоритм поиска по формулам в коллекциях математических документов. Указаны основные идеи, подходы и уже полученные результаты по разработке семантических технологий управления математическими знаниями, в том числе, подход к построению рекомендательных систем на основе онтологий математического знания и метод автоматизации процесса первичной обработки научной статьи, использующей TеX-нотацию.

Охарактеризована проблема построения системы анализа и оценки информационного и социального воздействия публикуемого научного контента на его пользователей. Проведено сопоставление традиционных (библиометрических и наукометрических) и альтернативных показателей такой оценки. Описан мировой опыт использования информетрических сервисов на сайтах научных журналов. Обсуждены варианты реализации этих подходов в рамках цифровой инфраструктуры электронного научного журнала.

Ключевые слова: издательские системы, современные модели публикации и распространения научных знаний, информационное общество, электронный научный журнал, информационные системы управления научными изданиями и публикациями, интеграция электронных ресурсов.

Визуализация цифровых 3D-объектов при формировании виртуальных выставок

Николай Евгеньевич Каленов, Сергей Александрович Кириллов, Ирина Николаевна Соболевская, Александр Николаевич Сотников
418-432
Аннотация: Представлены подходы к решению задачи создания реалистичных интерактивных 3D веб-коллекций музейных экспонатов. Рассмотрено представление 3D-моделей объектов на основе ориентированных полигональных структур. Описан метод создания виртуальной коллекции 3D-моделей по технологии интерактивной анимации. Также показано, как на основе отдельных кадров экспозиции с помощью методов фотограмметрии строится высококачественная 3D-модель. Приведены результаты расчетов для построения 3D-моделей реальных музейных экспонатов. Для создания 3D-моделей с целью предоставления их широкому кругу пользователей через интернет использована технология интерактивной анимации. Приведены различия между представлениями цифровых 3D-моделей. Описана технология создания цифровых 3D-моделей объектов из фондов Государственного биологического музея им. К.А. Тимирязева и формирования на их основе средствами электронной библиотеки «Научное наследие России» виртуальной выставки, посвященной научной деятельности М.М. Герасимова и его антропологическим реконструкциям. Выставка наглядно продемонстрирована возможности интеграции информационных ресурсов средствами электронной библиотеки. Формат виртуальных выставок позволил объединить ресурсы партнеров для предоставления широкому кругу пользователей коллекций, хранящихся в музейных, архивных и библиотечных фондах.
Ключевые слова: фотограмметрия, 3D-моделирование, интерактивная мультипликация, веб-дизайн, полигональное моделирование.

Методика сравнения программных решений распознавания текстов научных публикаций по качеству извлечения метаданных

Илия Игоревич Кузнецов, Олег Пантелеевич Новиков, Дмитрий Юрьевич Ильин
654-680
Аннотация:

Метаданные научных публикаций используются для построения каталогов, определения цитируемости публикаций и решения других задач. Автоматизация извлечения метаданных из PDF-файлов позволяет ускорить выполнение обозначенных задач, а от качества извлеченных данных зависит возможность их дальнейшего использования. Проанализированы существующие программные решения, в итоге отобраны три: GROBID, CERMINE, ScientificPdfParser. Предложена методика сравнения этих программных решений распознавания текстов научных публикаций по качеству извлечения метаданных. На основе методики проведен эксперимент по извлечению четырех типов метаданных (название, аннотация, дата публикации, имена авторов). Для сравнения программных решений использован набор из 112457 публикаций с разбиением на 23 предметные области, сформированный на основе данных Semantic Scholar. Приведен пример выбора эффективного программного решения извлечения метаданных в условиях заданных приоритетов для предметных областей и типов метаданных с использованием взвешенной суммы. Определено, что для приведенного примера CERMINE показывает эффективность на 10,5% выше, чем GROBID, и на 9,6% выше, чем ScientificPdfParser.

Ключевые слова: распознавание текста, научные публикации, метаданные, качество извлечения данных, методика.

Онтологический подход к описанию единого цифрового пространства научных знаний

Ольга Муратовна Атаева, Николай Евгеньевич Калёнов, Владимир Алексеевич Серебряков
3-19
Аннотация:

Несмотря на развитие технических средств, усложняются процессы, связанные с поиском полной и точной научной информации в огромном количестве источников данных. Для выхода на новый уровень в использовании технологий обработки информации в первую очередь необходим переход к семантически значимому представлению научных знаний, извлекаемых из информации в цифровой среде. В современных условиях, характеризуемых мультидисциплинарностью исследований, необходимого эффекта можно достичь, разработав универсальные подходы к хранению и представлению научных знаний. Эти подходы нашли свое отражение в концепции Единого цифрового пространства научных знаний. В работе представлен обзор основных понятий в этой области, используемых как для представления элементов пространства, так и для обеспечения доступа к ним не только для человека, но и для программных агентов. В качестве инструментария для конструирования пространства знаний рассмотрены семантические библиотеки.


 

Ключевые слова: пространство знаний, цифровое пространство знаний, онтологии, метаданные, научные знания, уровни метаданных, проектирование онтологий, семантические библиотеки.

Цифровая платформа для интеграции и анализа данных геофизического мониторинга байкальской природной территории

Андрей Павлович Григорюк, Людмила Петровна Брагинская, Игорь Константинович Семинский, Константин Жанович Семинский, Валерий Викторович Ковалевский
303-316
Аннотация:

Представлена цифровая платформа для данных комплексного мониторинга опасных геодинамических, инженерно-геологических и гидрогеологических процессов, протекающих в регионе интенсивного природопользования центральной экологической зоны Байкальской природной территории (ЦЭЗ БПТ). Платформа предназначена для интеграции и анализа данных, поступающих с нескольких полигонов, расположенных в пределах ЦЭЗ БПТ, с целью оценки состояния геологической среды и прогнозирования проявлений опасных процессов. Платформа построена по клиент-серверной архитектуре. Хранение, обработка и анализ данных осуществляются на сервере, к которому пользователи могут обращаться через интернет посредством веб-браузера. Блочная структура сервера позволяет легко расширять набор процедур обработки и анализа данных, а также визуализации результатов. В настоящее время доступны несколько методов фильтрации данных (линейная частотная, Савицкого–Голея и другие), различные методы спектрального и вэйвлет-анализа, мультифрактальный и энтропийный анализ, анализ пространственных данных. Цифровая платформа была опробована на реальных данных.

Ключевые слова: геофизический мониторинг, цифровая платформа, предвестники, сейсмический прогноз, землетрясения.

Построение онтологии предметной области на основе логической модели данных

Александр Михайлович Гусенков, Наиль Раисович Бухараев, Евгений Васильевич Биряльцев
390-417
Аннотация: Представлена технология автоматизированного построения онтологии предметной области на основе информации, извлекаемой из комментариев реляционных баз данных ПАО «Татнефть». Технология основана на построении конвертора (компилятора), транслирующего логическую модель данных Epicentre Petrotechnical Open Software Corporation (POSC), представленную в виде ER-диаграмм и набора описаний на объектно-ориентированном языке EXPRESS, в язык описания онтологий OWL, рекомендованный консорциумом W3C. Описаны основные синтаксические и семантические аспекты преобразования.
Ключевые слова: онтология предметной области, реляционные базы данных, POSC, OWL.

Применение алгоритма Дугласа–Пеккера в вопросах онлайн-аутентификации инструментов удалённой работы при подготовке специалистов укрупнённой группы специальностей 10.00.00 «Информационная безопасность»

Антон Григорьевич Уймин, Владимир Сергеевич Греков
679-694
Аннотация:

В условиях перехода образовательных систем на дистанционное обучение, а также развития тренда на удалённую работу, возникла острая потребность в разработке надежных технологий биометрической идентификации и аутентификации для верификации исполнителей работ в режиме удаленной работы. Такие технологии позволяют обеспечить высокую степень защиты и удобство использования, что делает вопросы их разработки и оптимизации крайне важными.


Проблема заключается в необходимости повышения точности и эффективности систем распознавания движений манипулятора «мышь» без использования специализированных устройств в максимально короткий промежуток времени. Для ее решения требуется эффективная предобработка таких движений, чтобы упростить их траектории, сохранив при этом их ключевые особенности.


В статье предложено использование алгоритма Дугласа–Пеккера для предварительной обработки данных траекторий движений «мыши». Этот алгоритм позволяет значительно уменьшить количество точек в траекториях, упрощая их при сохранении основной формы движений. Данные с упрощенными траекториями затем используются для обучения нейронных сетей.


Экспериментальная часть работы показала, что применение алгоритма Дугласа–Пеккера позволяет сократить количество точек в траекториях на 60%, что приводит к увеличению точности распознавания движений с 70% до 82%. Такое упрощение данных способствует ускорению процесса обучения нейронных сетей и повышению их операционной эффективности.


Проведенное исследование подтвердило эффективность использования алгоритма Дугласа–Пеккера для предварительной обработки данных в задачах распознавания движений «мыши». Полученные результаты могут найти применение в разработке более интуитивно понятных и адаптивных пользовательских интерфейсов.


Предложены также направления для дальнейших исследований, включая оптимизацию параметров алгоритма для различных типов движений и исследование возможности его комбинирования с другими методами машинного обучения.

Ключевые слова: аутентификация, биометрическая идентификация, удалённая работа, дистанционное обучение, алгоритм Дугласа–Пеккера, предобработка данных, нейросеть, HID-устройство, траектория движений «мыши», оптимизация данных.

Анализ распределения ключевых терминов в научных статьях

Светлана Александровна Власова, Николай Евгеньевич Каленов, Ирина Николаевна Соболевская
35-51
Аннотация:

Одними из основных компонентов Единого Цифрового Пространства Научных Знаний (ЕЦПНЗ) являются предметные онтологии отдельных тематических подпространств, включающие в себя основные понятия, относящиеся к данному научному направлению. Задача построения предметных онтологий на первом этапе требует формирования массива ключевых терминов в заданной области науки с последующим установлением связей между ними. Аналогичная задача стоит и при формировании энциклопедий в части определения перечня статей (слотов), определяющего их содержание. Одним из источников формирования массива ключевых терминов могут являться метаданные статей, опубликованных в ведущих научных журналах, а именно, авторские ключевые термины («ключевые слова» – в терминологии редакций журналов), сопровождающие в обязательном порядке эти статьи. Чтобы сделать заключение о возможности использования этого подхода к формированию предметных онтологий, необходимо провести предварительный анализ массива авторских ключевых терминов как с точки зрения реального соответствия основным направлениям исследований в данном разделе науки, так и с точки зрения распределения частоты встречаемости тех или иных терминов. В данной статье приведены результаты частотного анализа встречаемости авторских ключевых терминов на русском и английском языках, проведенного на основе программной обработки нескольких тысяч статей из ведущих российских журналов по математике, информатике и физике, отраженных в базе данных MathNet и на сайтах ряда издательств. Проведена оценка соответствия распределения ключевых терминов (как словосочетаний) и отдельных слов закону Брэдфорда, выявлены ядра ключевых терминов внутри тематических направлений.

Ключевые слова: цифровое пространство научных знаний, предметные онтологии, энциклопедические статьи, ключевые термины, метаданные статей, частотный анализ.
1 - 11 из 11 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества