• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Нейросетевая архитектура воплощенного интеллекта

Айрат Рафкатович Нурутдинов
598-655
Аннотация:

В последние годы достижения в области искусственного интеллекта (ИИ) и машинного обучения обусловлены успехами в разработке больших языковых моделей (LLM) на основе глубоких нейронных сетей. В то же время, несмотря на существенные возможности, LLM имеет такие принципиальные ограничения, как спонтанная недостоверность в фактах и суждениях; допущение простых ошибок, диссонирующих с высокой компетентностью в целом; легковерие, проявляющееся в готовности принимать за истину заведомо ложные утверждения пользователя; отсутствие сведений о событиях, произошедших после завершения обучения.


Вероятно, ключевой причиной является то, что обучение биологического интеллекта происходит через усвоение неявных знаний воплощенной формой интеллекта, позволяющей решать интерактивные физические задачи реального мира. Биоинспирированные исследования нервных систем организмов позволяют рассматривать мозжечок, координирующий движения и поддерживающий равновесие, в качестве главного кандидата для раскрытия методов реализации воплощенного физического интеллекта. Его простая повторяющаяся структура и способность управлять сложными движениями дают надежду на возможность создания аналога адаптивным нейронным сетям.


В настоящей работе изучается биоинспирированная архитектура мозжечка как форма аналоговых вычислительных сетей, способная моделировать сложные физические системы реального мира. В качестве простого примера представлена реализация воплощенного ИИ в виде многокомпонентной модели щупальца осьминога, демонстрирующей потенциал в создании адаптивных физических систем, обучающихся и взаимодействующих с окружающей средой.

Ключевые слова: Искусственные нейронный сети, большие языковые модели, неявное обучение, мозжечок, аналоговые компьютеры, воплощенный интеллект, мягкие роботы, осьминоги.

Цифровое моделирование тематического поля изучения культурной конгруэнтности в психологическом контексте

Айсылу Мунавировна Ганиева
1057-1069
Аннотация:

В работе установлены ключевые темы в современных психологических исследованиях культурной конгруэнтности с использованием метода тематического цифрового моделирования массива научных публикаций.


Актуальность и значимость проведенного исследования обусловлены
ростом значимости культурной конгруэнтности в условиях цифровой трансформации общества, изменяющей способы социализации и взаимодействия. Современные технологии требуют переосмысления психологических механизмов адаптации индивида к культурной среде, особенно в детском и подростковом возрастах. Несмотря на активное изучение этого феномена, наблюдается очевидный недостаток исследований, посвященных культурной конгруэнтности взрослых. Применение цифрового моделирования и искусственного интеллекта позволяет систематизировать знания и выявить структуру тематического поля с высокой точностью. Полученные данные открывают перспективу для дальнейшего изучения культурной конгруэнтности в ходе онтогенеза.


Конструирование тематического поля исследований культурной конгруэнтности, основанный на анализе цифровых анналов, содержащих коллекцию научных публикаций по данной тематике (112 статей), был выполнен с использованием алгоритма тематического моделирования (topic modeling) на языке программирования Python и с применением цифровых платформ, включая инструменты на основе мультимодальных нейросетей (GigaChat, Qwen, DeepSeek). В результате проведенного анализа возрастных особенностей феномена культурной
конгруэнтности выделены четыре возрастные группы: дошкольники, младшие школьники, подростки и взрослые.

Ключевые слова: культурная конгруэнтность, психологическое исследование, возрастная психология, общая психология, тематическое моделирование.

Сравнительный анализ текстов геологических публикаций с использованием больших языковых моделей

Михаил Иванович Патук, Вера Викторовна Наумова
806-821
Аннотация:

Стремительный рост объема публикаций во всех областях геологических наук делает критически важным внедрение методов автоматизированной обработки научных текстов. Одним из наиболее перспективных инструментов для решения этой задачи выступают большие языковые модели на основе нейронных сетей. Огромный прорыв в области искусственного интеллекта за последние годы превратил такие модели в незаменимых помощников для исследователей.
Наши работы по семантическому поиску публикаций с использованием дополнительно тренированных языковых моделей и нахождения меры близости геологических текстов показали хорошие результаты. Но используемые модели оказались неспособны выполнить глубокий анализ текстов. Сравнительный анализ современных архитектур позволил нам выделить модель DeepSeek R1, относящуюся к классу систем с расширенными возможностями логического вывода. Данный тип моделей демонстрирует принципиально новый уровень качества генерации. На базе выбранной модели разработан веб-сервис, предоставляющий уникальный функционал, осуществляющий сравнительный анализ до 5 научных статей стандартного объема; поддержку мульти язычных источников (ввод текстов на английском, китайском, русском и др. языках); формирование структурированных отчетов на русском языке с выделением ключевых тезисов, противоречий и паттернов. Проведено тестирование предложенного подхода для сравнительного анализа геологических публикаций. Тестирование показало результаты, вызывающие доверие.

Ключевые слова: искусственный интеллект, большие языковые модели, обработка естественного языка, анализ текстов, геология.

Классификация изображений с использованием обучения с подкреплением

Артем Александрович Елизаров, Евгений Викторович Разинков
1172-1191
Аннотация:

В последнее время активно развивается такое направление машинного обучения, как обучение с подкреплением. Как следствие предпринимаются попытки использования обучения с подкреплением для решения задач компьютерного зрения, в частности для решения задачи классификации изображений. Задачи компьютерного зрения являются на сегодняшний день одними из наиболее актуальных задач искусственного интеллекта.


В статье предложен метод классификации изображений в виде глубокой нейронной сети с использованием обучения с подкреплением. Идея разработанного метода сводится к решению задачи о контекстном многоруком бандите с помощью различных стратегий достижения компромисса между эксплуатацией и исследованием и алгоритмов обучения с подкреплением. Рассмотрены такие стратегии, как -жадная, -softmax, -decay-softmax и метод UCB1, и такие алгоритмы обучения с подкреплением, как DQN, REINFORCE и A2C. Проведен анализ влияния различных параметров на эффективность работы.

Ключевые слова: машинное обучение, классификация изображений, обучение с подкреплением, задача о контекстном многоруком бандите.
1 - 4 из 4 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2026 Казанский (Приволжский) федеральный университет; Институт развития информационного общества