• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Как эмбеддинги имен сущностей влияют на качество выравнивания сущностей

Даниил Иванович Гусев, Зинаида Владимировна Апанович
52-79
Аннотация:

Алгоритмы установления соответствия между сущностями осуществляют поиск эквивалентных сущностей в разноязычных графах знаний. Данная проблема возникает, как правило, при интеграции разноязычных графов знаний. В настоящее время решение этой проблемы становится весьма актуальным для практического решения проблем импортозамещения, например, чтобы найти информацию о лекарствах, выпускаемых в разных странах под разными названиями, или же решить проблему поиска эквивалентных запчастей.


В настоящее время известно несколько библиотек с открытым кодом, которые объединяют известные алгоритмы выравнивания сущностей, а также тестовые наборы данных для различных языков. В данной работе описан русско-английский набор данных для экспериментов с нескольким популярными алгоритмами выравнивания сущностей. Особое внимание уделено методам генерации векторных представлений для имен сущностей. В частности, рассмотрены комбинации различных методов генерации векторных представлений (эмбеддингов) имен сущностей с известными алгоритмами выравнивания сущностей. Таблицы с результатами экспериментов дополнены визуализациями. 

Ключевые слова: разноязычные графы знаний, идентификация сущностей, cross-lingual entity alignment, knowledge graphs, relational embeddings, name embeddings.

Атрибуция архивных рукописных писем с использованием сиамских нейронных сетей

Наталия Михайловна Пронина
1454-1480
Аннотация:

Предложен метод автоматической атрибуции архивных рукописных писем на основе сиамской нейронной сети, решающий ключевую проблему цифровой гуманитаристики – установление авторства исторических документов. Актуальность исследования обусловлена массовой оцифровкой архивов XVII–XIX вв., атрибуция которых затруднена из-за неполных исходных сведений об авторах.


Метод адаптирован к работе с реальным корпусом текстов и учитывает характерные для архивов проблемы: некачественные оцифровки, значительную вариативность почерка и выраженный дисбаланс классов (от 1 до 50 и более образцов на автора). Применение сиамской архитектуры позволяет получать дискриминативные векторные представления, эмбеддинги, на основе которых выполняется не только классификация документов известных авторов, но и эффективно выявляются рукописи, не принадлежащие ни одному из них. Это сужает круг кандидатов для последующей экспертной проверки.


Представлен алгоритм предобработки данных и проведено сравнительное исследование двух подходов к анализу текста: на уровне фрагментов изображения (300 × 300 пикселей) и уровне отдельных строк. Разработанный инструмент предлагает архивным работникам и филологам эффективное решение для предварительной сортировки и атрибуции крупных массивов рукописных документов.

Ключевые слова: сиамская нейронная сеть, идентификация, верификация, атрибуция, рукописный текст, архивные документы, сверточная нейронная сеть, рекуррентная нейронная сеть.
1 - 2 из 2 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2026 Казанский (Приволжский) федеральный университет; Институт развития информационного общества