• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Типы эмбеддингов и их применение в интеллектуальной академической генеалогии

Андреас Хачатурович Мариносян
240-261
Аннотация:

Рассмотрена проблема построения интерпретируемых векторных представлений научных текстов для задач интеллектуальной академической генеалогии. Предложена типология эмбеддингов, включающая три класса: статистические, выученные нейросетевые и структурированные символьные. Обоснована необходимость объединения достоинств нейросетевых (высокая семантическая точность) и символьных (интерпретируемость измерений) подходов. Для реализации такого гибридного подхода предложен алгоритм построения выученных символьных эмбеддингов путем регрессионного преобразования вектора внутреннего представления нейросетевой модели в интерпретируемый набор оценок.


Экспериментальная оценка алгоритма проведена на корпусе фрагментов авторефератов диссертаций по педагогическим наукам. Компактный трансформерный энкодер с регрессионной головой обучался воспроизводить тематические оценки, сгенерированные передовой генеративной языковой моделью. Сравнение шести режимов обучения (три типа регрессионной головы и два состояния энкодера) показало, что дообучение верхних слоев энкодера является ключевым фактором повышения качества. По результатам тестирования была выбрана наилучшая конфигурация, которая достигла коэффициента детерминации R² = 0.57 и точности определения трех наиболее релевантных концептов, равной 74%. Результаты подтверждают, что для определенного рода задач, в которых требуется формальное представление выходных данных, возможна аппроксимация поведения генеративной модели компактным энкодером с регрессионной головой при существенно меньших вычислительных затратах. В более широкой перспективе разработка алгоритмов построения выученных символьных эмбеддингов будет способствовать созданию такой модели формальной репрезентации научного знания, в которой конвергенция нейросетевых и символьных методов обеспечит как масштабируемость обработки научных текстов, так и интерпретируемость векторных представлений, кодирующих содержание.

Ключевые слова: эмбеддинги, академическая генеалогия, трансформерный энкодер, регрессионная голова, символьные эмбеддинги, тематический профиль, обработка естественного языка, интерпретируемость, большие языковые модели, наукометрия.

Атрибуция архивных рукописных писем с использованием сиамских нейронных сетей

Наталия Михайловна Пронина
1454-1480
Аннотация:

Предложен метод автоматической атрибуции архивных рукописных писем на основе сиамской нейронной сети, решающий ключевую проблему цифровой гуманитаристики – установление авторства исторических документов. Актуальность исследования обусловлена массовой оцифровкой архивов XVII–XIX вв., атрибуция которых затруднена из-за неполных исходных сведений об авторах.


Метод адаптирован к работе с реальным корпусом текстов и учитывает характерные для архивов проблемы: некачественные оцифровки, значительную вариативность почерка и выраженный дисбаланс классов (от 1 до 50 и более образцов на автора). Применение сиамской архитектуры позволяет получать дискриминативные векторные представления, эмбеддинги, на основе которых выполняется не только классификация документов известных авторов, но и эффективно выявляются рукописи, не принадлежащие ни одному из них. Это сужает круг кандидатов для последующей экспертной проверки.


Представлен алгоритм предобработки данных и проведено сравнительное исследование двух подходов к анализу текста: на уровне фрагментов изображения (300 × 300 пикселей) и уровне отдельных строк. Разработанный инструмент предлагает архивным работникам и филологам эффективное решение для предварительной сортировки и атрибуции крупных массивов рукописных документов.

Ключевые слова: сиамская нейронная сеть, идентификация, верификация, атрибуция, рукописный текст, архивные документы, сверточная нейронная сеть, рекуррентная нейронная сеть.

Как эмбеддинги имен сущностей влияют на качество выравнивания сущностей

Даниил Иванович Гусев, Зинаида Владимировна Апанович
52-79
Аннотация:

Алгоритмы установления соответствия между сущностями осуществляют поиск эквивалентных сущностей в разноязычных графах знаний. Данная проблема возникает, как правило, при интеграции разноязычных графов знаний. В настоящее время решение этой проблемы становится весьма актуальным для практического решения проблем импортозамещения, например, чтобы найти информацию о лекарствах, выпускаемых в разных странах под разными названиями, или же решить проблему поиска эквивалентных запчастей.


В настоящее время известно несколько библиотек с открытым кодом, которые объединяют известные алгоритмы выравнивания сущностей, а также тестовые наборы данных для различных языков. В данной работе описан русско-английский набор данных для экспериментов с нескольким популярными алгоритмами выравнивания сущностей. Особое внимание уделено методам генерации векторных представлений для имен сущностей. В частности, рассмотрены комбинации различных методов генерации векторных представлений (эмбеддингов) имен сущностей с известными алгоритмами выравнивания сущностей. Таблицы с результатами экспериментов дополнены визуализациями. 

Ключевые слова: разноязычные графы знаний, идентификация сущностей, cross-lingual entity alignment, knowledge graphs, relational embeddings, name embeddings.

Формирование структурированных представлений научных журналов для интеграции в граф знаний и семантического поиска

Ольга Муратовна Атаева, Михаил Геннадьевич Кобук
1306-1323
Аннотация:

Работа посвящена проблеме развития библиотеки научных предметных областей SciLibRu, как продолжения семантического описания научных трудов проекта LibMeta. В основе этой библиотеки лежит концептуальная модель данных, структура и семантика которой сформированы на принципах онтологического моделирования. Такой подход обеспечивает строгое описание предметной области, формализацию взаимосвязей между сущностями и возможность дальнейшего автоматизированного анализа данных. Целью настоящего исследования были разработка и экспериментальное применение методов структуризации содержимого научных журналов в формате LaTeX для их интеграции в онтологию библиотеки и обеспечения семантического поиска.


Предложен алгоритм трансляции в формат XML данных, представленных множеством файлов, для интеграции в онтологию библиотеки. Реализован модуль векторного поиска, основанный на вычислении эмбеддингов с использованием языковых моделей. Выявлены закономерности распределения эмбеддингов и факторы, влияющие на точность ранжирования результатов поиска. Проведено тестирование двух названых компонентов.


Разработанный метод составляет основу для автоматического включения содержимого научных журналов в граф знаний SciLibRu и создания обучающих корпусов для языковых моделей, ограниченных рамками научных предметных областей. Полученные результаты способствуют развитию систем навигации по графу знаний журналов, а также рекомендательных механизмов и инструментов интеллектуального поиска по русскоязычным научным текстам.

Ключевые слова: полуструктурированные данные, онтология текста, LaTeX, векторное представление текста, полнотекстовый поиск, семантический поиск.
1 - 4 из 4 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2026 Казанский (Приволжский) федеральный университет; Институт развития информационного общества