Аннотация:
Сигнатурные методы представляют собой мощный инструмент анализа временных рядов, который преобразует их в форму, удобную для задач машинного обучения. В статье рассмотрены основные понятия сигнатуры пути, ее свойства и геометрический смысл, а также методы вычисления для различных типов временных рядов. Приведены примеры применения сигнатурных методов в различных областях, включая финансы, медицину и образование, продемонстрированы их преимущества перед традиционными подходами. Особое внимание уделено генерации синтетических данных на основе сигнатур, что особенно актуально в условиях ограниченного объема исходных данных. Представлены результаты экспериментальных исследований по генерации и предсказанию траекторий цифрового следа обучения студентов, подтверждающие эффективность сигнатурных методов для применения в задачах машинного обучения по анализу и прогнозированию временных рядов.