• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

Нормализация текста, распознанного при помощи технологии оптического распознавания символов, с использованием легковесных LLM

Владислав Константинович Вершинин, Иван Владимирович Ходненко, Сергей Владимирович Иванов
1036-1056
Аннотация:

Несмотря на значительный прогресс, технологии оптического распознавания символов (OCR) для исторических газет по-прежнему допускают 5–10% ошибок на уровне символов. В работе представлена полностью автоматизированная система нормализации пост-OCR, объединяющая легкие языковые модели (LLM) объемом 7–8 млрд параметров, обученные по инструкциям и квантизованные до 4 бит (INT4), с небольшим набором регулярных выражений. На наборе данных BLN600 (600 страниц британских газет XIX в.) лучшая модель YandexGPT-5-Instruct Q4 снижает Character Error Rate (CER) с 8.4% до 4.0% (–52.5%) и Word Error Rate (WER) с 20.2% до 6.5% (–67.8%), повышая при этом семантическое сходство до 0.962. Система работает на потребительском оборудовании (RTX-4060 Ti, 8 ГБ VRAM) со скоростью около 35 секунд на страницу и не требует дополнительного обучения или параллельных данных. Полученные результаты показывают, что компактные INT4-LLM являются практичной альтернативой крупным моделям для постобработки OCR исторических документов.

Ключевые слова: оптическое распознавание символов, пост-OCR-коррекция, исторические газеты, большие языковые модели, квантизация, INT4, конвейер нормализации, ошибка на уровне символов, семантическое сходство, регулярные выражения, YandexGPT-5, легкие модели, обработка естественного языка, цифровые гуманитарные науки, оцифровка документов.

Применение машинного обучения к задаче генерации поисковых запросов

Александр Михайлович Гусенков, Алина Рафисовна Ситтикова
272-293
Аннотация:

Исследованы две модификации рекуррентных нейронных сетей: сети с долгой краткосрочной памятью и сети с управляемым рекуррентным блоком с добавлением механизма внимания к обеим сетям, а также модель Transformer в задаче генерации запросов к поисковым системам. В качестве модели Transformer использована модель GPT-2 от OpenAI, которая обучалась на запросах пользователей. Проведен латентно-семантический анализ для определения семантических сходств между корпусом пользовательских запросов и запросов, генерируемых нейронными сетями. Для проведения анализа корпус был переведен в формат bag of words, к нему применена модель TFIDF, проведено сингулярное разложение. Семантическое сходство вычислялось на основе косинусной меры. Также для более полной оценки применимости моделей к задаче был проведен экспертный анализ для оценки связности слов в искусственно созданных запросах.

Ключевые слова: обработка естественного языка, генерация естественного языка, машинное обучение, нейронные сети.

Семантическое сходство в задаче аспектно-эмоционального анализа

Евгений Вячеславович Котельников, Павел Дмитриевич Блинов
120-137
Аннотация:

Исследуется проблема аспектно-эмоционального анализа текста. По сравнению с общим анализом тональности такой вариант является более сложным по причине наличия ряда сопутствующих подзадач, таких, как выделение аспектных терминов, определение тональности по отношению к этим терминам и аспектным категориям. Однако решение данной проблемы значительно расширяет возможности систем автоматического анализа неструктурированного текста.

Приведен обзор предыдущих работ в области аспектно-эмоционального анализа, описаны обучающие и тестовые данные семинара SentiRuEval. Для задачи извлечения аспектных терминов использовано векторное пространство распределенных представлений слов. Тональность аспектных терминов определяется на основе функций совместной информации и семантического сходства. Приведены сравнительные результаты на тестовых данных и заключительные выводы.

Ключевые слова: аспектно-эмоциональный анализ текста, взаимная информация, распределённые представления слов, машинное обучение, SentiRuEval.
1 - 3 из 3 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества