Аннотация:
В последние годы большие языковые модели (Large Language Models, LLM) достигли значительных успехов в области обработки естественного языка и стали ключевым инструментом для решения широкого спектра прикладных и исследовательских задач. Однако с ростом их масштабов и возможностей все более острой становится проблема галлюцинаций – генерации ложной, недостоверной или несуществующей информации, представленной в достоверной форме. В связи с этим вопросы анализа природы галлюцинаций и разработки методов их выявления приобретают особую научную и практическую значимость.
В работе изучен феномен галлюцинаций в больших языковых моделях, рассмотрены их существующая классификация и возможные причины. На базе модели Flan-T5 также исследованы различия внутренних состоянии модели при генерации галлюцинаций и верных ответов. На основе этих расхождений представлены два способа детектирования галлюцинаций: с помощью карт внимания и скрытых состояний модели. Эти методы протестированы на данных из бенчмарков HaluEval и Shroom 2024 в задачах суммаризации, ответов на вопросы, перефразирования, машинного перевода и генерации определений. Кроме того, исследована переносимость обученных детекторов между различными типами галлюцинаций, что позволило оценить универсальность предложенных методов для различных типов задач.