Аннотация:
Экспоненциальный рост размеров таких графов, как социальные сети, интернет-графы и др., требует новых подходов к их визуализации. Наряду с представлениями типа «диаграммы связей вершин» все чаще используются визуализации матриц смежностей, а также разнообразные комбинации этих представлений. В данном обзоре рассмотрены новые подходы к визуализации графов большого объема при помощи матриц смежностей и приведены примеры приложений, где эти подходы применяются. Описаны различные типы шаблонов, возникающие при упорядочении матриц смежностей, соответствующих современным сетям, и алгоритмы, позволяющие выделять эти шаблоны. В частности, продемонстрировано, как использование методов упорядочения матриц совместно с алгоритмами поиска таких шаблонов, как звезды, ложные звезды, цепи, почти клики, полные клики, двудольные ядра и почти двудольные ядра, позволяют создавать понятные визуализации графов, имеющих миллионы вершин и ребер. Также приведены примеры гибридных визуализаций, использующих диаграммы связей вершин для представления неплотных частей графа, а матрицы смежностей – для представления плотных частей и их приложений. Гибридные методы используются для визуализации сетей соавторства, глубоких нейронных сетей, сравнения сетей связности человеческого мозга и др.
Ключевые слова:
графы большого объема, визуализация, матрицы смежности, жгуты ребер, гибридная визуализация.