• Main Navigation
  • Main Content
  • Sidebar

Russian Digital Libraries Journal

  • Home
  • About
    • About the Journal
    • Aims and Scopes
    • Themes
    • Editor-in-Chief
    • Editorial Team
    • Submissions
    • Open Access Statement
    • Privacy Statement
    • Contact
  • Current
  • Archives
  • Register
  • Login
  • Search
Published since 1998
ISSN 1562-5419
16+
Language
  • Русский
  • English

Search

Advanced filters

Search Results

Application of Supercomputer Technologies for Long-Term Modeling of Permafrost Boundaries in the Oil and Gas Fields of the Arctic

Mikhail Yurievich Filimonov, Nataliia Anatolyevna Vaganova, Elena Nikolaevna Akimova, Vladimir Evgenevich Misilov
848-865
Abstract: A model of propagation of thermal fields in permafrost from various engineering objects operating in Arctic regions is considered. The proposed model includes the most significant technical and climatic parameters affecting the formation of thermal fields in the surface layer of the soil. The main objective of the study is a long-term forecasting of changes in the dynamics of permafrost boundaries during operation of cluster sites of northern oil and gas fields. Such a forecast is obtained by simulation of complex system consisting of heat or cold sources and frozen soil, thawing of which can lead to the loss of the bearing capacity and possible technogenic and environmental accidents. For example, the sources of heat can be production wells, and the sources of cold can be seasonal cooling devices that are used to stabilize the soil. To minimize the impact of heat sources on permafrost, various options for thermal insulation are used, and to preserve the original temperature regime of the top layer of soil, riprap materials consisting of sand, concrete, foam concrete, or other heat insulating material are used. The developed set of programs was used in the design of 12 northern oil and gas fields. To solve the described problem in a complex three-dimensional area, substantial computational resources are required. The computing time of one variant can often exceed 10–20 hours of machine time on a supercomputer. To speed up the numerical calculations, multi-core processors are used. Numerical calculations illustrate the possibility of a developed set of programs for making long-term forecasts for determining changes in the boundaries of the permafrost zones, and show that on multi-core processors it is possible to achieve acceleration close to the theoretical one.
Keywords: computer software, heat and mass transfer, cryolithozone, simulation, parallel computing, Stefan problem, OpenMP.

Visual and virtual reconstructions in museum environments

Екатерина Владимировна Разувалова, Константин Александрович Руденко
302-317
Abstract: In this paper, we analyze examples of the most successful reconstructions of historico-cultural objects, which were based on the informational and communicational technologies and were presented and available through the Internet. Modern technologies allow to expand the museum environment and to increase the abilities of museum exhibitions by creating the emotional, authentic immersive atmosphere, which appeals to modern visitors.
Keywords: historical reconstruction, virtual reconstruction, museum, cultural heritage.
1 - 2 of 2 items
Information
  • For Readers
  • For Authors
  • For Librarians
Make a Submission
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo

Russian Digital Libraries Journal

ISSN 1562-5419

Information

  • About the Journal
  • Aims and Scopes
  • Themes
  • Author Guidelines
  • Submissions
  • Privacy Statement
  • Contact
  • eLIBRARY.RU
  • dblp computer science bibliography

Send a manuscript

Authors need to register with the journal prior to submitting or, if already registered, can simply log in and begin the five-step process.

Make a Submission
About this Publishing System

© 2015-2025 Kazan Federal University; Institute of the Information Society