• Main Navigation
  • Main Content
  • Sidebar

Электронные библиотеки

  • Главная
  • О нас
    • О журнале
    • Цели и задачи
    • Тематика
    • Главный редактор
    • Редакция
    • Отправка материалов
    • Заявление об открытом доступе
    • Заявление о конфиденциальности
    • Контакты
  • Текущий выпуск
  • Архивы
  • Регистрация
  • Вход
  • Поиск
Издается с 1998 года
ISSN 1562-5419
16+
Language
  • Русский
  • English

Найти

Расширенные фильтры

Результаты поиска

От составителя

Наталья Валентиновна Лукашевич
86-87
Аннотация:

Настоящий выпуск журнала «Электронные библиотеки» представляет собой тематический сборник статей, посвященный проблеме автоматического анализа тональности текстов на русском языке.

Задача анализ тональности состоит в автоматическом определении отношения автора текста (позитивном, негативном или нейтральном) к объектам и ситуациям, о которых говорится в анализируемом тексте. В настоящее время автоматический анализ тональности используется в самых различных приложениях, включая мониторинг репутации компаний и публичных персон, анализ общественных настроений в том или ином регионе, анализ сообществ в социальных сетях и многое другое.

В данном тематическом выпуске представлены статьи участников открытого тестирования систем анализа тональности на русском языке SentiRuEval, провeденном в 2014–2015 годах. В данном тестировании участникам были предложены для решения две основные задачи. 

Автоматический анализ тональности текстов по отношению к заданному объекту и его характеристикам

Наталья Валентиновна Лукашевич
88-119
Аннотация:

Статья посвящена рассмотрению подходов к анализу тональности текстов по отношению к заданному объекту, а также его характеристикам (аспектам). Для решения задачи анализа тональности по отношению к характеристикам сущности необходимо решать также задачи извлечения аспектов для сущности, категоризацию или кластеризацию аспектов по аспектным категориям, определение тональности текста по отношению к заданному аспекту или аспектной категории. Также в статье описывается задание по анализу тональности отзывов пользователей в рамках открытого тестирования систем анализа тональности SentiRuEval.

Ключевые слова: анализ тональности, машинное обучение, тематическое моделирование, оценочная лексика, SentiRuEval.

Тестирование методов анализа тональности текста, основанных на словарях

Елена Викторовна Тутубалина, Владимир Владимирович Иванов, Мария Загулова, Никита Мингазов, Ильсеяр Алимова, Валентин Малых
138-162
Аннотация:

Технологии анализа тональности текста развиваются интенсивно, что обусловлено ростом объемов открытых источников, представляющих мнения пользователей интернета по различным вопросам. В статье описаны методы для анализа тональности текстов отзывов и коротких сообщений (твитов), приводятся результаты оценки их качества, которая производилась в рамках российского семинара SentiRuEval-2015.

Ключевые слова: извлечение информации, анализ тональности, классификация текстов, машинное обучение с учителем.

Выявление психологического портрета на основе определения тональности сообщений для антропоморфного социального агента

Антон Анатольевич Алексеев, Влада Владимировна Кугуракова, Денис Сергеевич Иванов
149-165
Аннотация: Исследованы аспект выявления психологического портрета респондента и генерация отношения к нему социальным агентом на основе анализа тональности диалога. Рассмотрены принципы генерации отношения социального агента к респонденту и изменение его эмоционального настроя на протяжении общения. Реализация поставленной задачи осуществлена с помощью языка программирования Python и работы с реальными данными. Проведенный анализ алгоритмов классификации, основанных на подходах машинного обучения, подтвердил практическую значимость работы.
Ключевые слова: социальный агент, тональность, эмоциональное отношение, машинное обучение.
1 - 4 из 4 результатов
Информация
  • Для читателей
  • Для авторов
  • Для библиотек
Отправить материал
Текущий выпуск
  • Логотип Atom
  • Логотип RSS2
  • Логотип RSS1

Электронные библиотеки

ISSN 1562-5419

Информация

  • О журнале
  • Цели и задачи
  • Тематика
  • Руководство для авторов
  • Отправка материалов
  • Заявление о конфиденциальности
  • Контакты
  • eLIBRARY.RU
  • dblp computer science bibliography

Отправить статью

Авторам нужно зарегистрироваться в журнале перед отправкой материалов, или, если вы уже зарегистрированы, можно просто войти со своей учетной записью и начать процесс отправки, состоящий из пяти шагов.

Отправить материал
Больше информации об этой издательской системе, платформе и рабочем процессе от OJS/PKP.

© 2015-2025 Казанский (Приволжский) федеральный университет; Институт развития информационного общества