Аннотация:
В современном мире проблемы, возникающие в сфере дорожного движения, имеют большую значимость. С целью решения существующих задач разрабатываются различные интеллектуальные системы, одной из которых является система «Умный город». Данная работа посвящена разработке информационно-аналитической системы (ИАС) для управления интеллектуальным светофором. Представленная система состоит из двух уровней, каждый из которых реализует набор определенных операций. Первый уровень отвечает за обнаружение объектов, в частности, пешеходов и автомобилей, находящихся на перекрестке, а второй уровень осуществляет расчёт времени работы сигналов светофора для управляющего сигнала, который передаётся на устройство. Для сравнительного анализа выбран комбинационный метод (HOG+SVM) Histogram of Oriented Gradients, основанный на подсчёте числа направлений градиента на отдельных областях изображения и Support Vector Machines, с помощью которого строятся гиперплоскости в n-мерном пространстве с целью разделения объектов, относящихся к разным классам. Результаты экспериментального исследования, в ходе которого проводилось распознавание объектов на изображениях, показали превосходство разработанной информационно-аналитической системы над существующими. Среднее значение точности выявления пешеходов и автомобилей посредством ИАС составило 69,4%. Кроме того, по результатам проведенного эксперимента сделан вывод, что точность выявления объектов на изображениях прямо пропорциональна расстоянию от видеокамеры до объекта.