Аннотация:
Проблема прогнозирования досрочного отчисления студентов российских вузов является актуальной, поэтому требуется разработка новых инновационных подходов для её решения. Для решения данной проблемы возможна разработка предиктивных систем на основе использования данных о студентах, имеющихся в информационных системах вузов. В настоящей работе исследованы модели машинного обучения для прогнозирования досрочного отчисления студентов, обученные на основе данных о характеристиках и успеваемости студентов. Основная научная новизна работы заключается в использовании методов объяснимого ИИ для интерпретации и объяснения функционирования обученных моделей машинного обучения. Методы объяснимого искусственного интеллекта позволяют понять, какие из входных признаков (характеристик студента) оказывают наибольшее влияние на результаты прогнозов обученных моделей, а также могут помочь понять, почему модели принимают те или иные решения. Полученные результаты расширяют понимание влияния различных факторов на досрочное отчисление студентов.